This work is licensed under the Creative Commons Attribution 4.0 International License.
Hickey SM, Sankari A, Giwa AO. Mechanical Ventilation. In: StatPearls. StatPearls Publishing; 2024. Accessed December 18, 2024. http://www.ncbi.nlm.nih.gov/books/NBK539742/HickeySMSankariAGiwaAOMechanical VentilationIn:StatPearlsStatPearls Publishing2024Accessed December 18, 2024. http://www.ncbi.nlm.nih.gov/books/NBK539742/Search in Google Scholar
Alviar CL, Miller PE, McAreavey D, et al. Positive Pressure Ventilation in the Cardiac Intensive Care Unit. J Am Coll Cardiol. 2018;72(13):1532–1553. doi:10.1016/j.jacc.2018.06.074AlviarCLMillerPEMcAreaveyDPositive Pressure Ventilation in the Cardiac Intensive Care UnitJ Am Coll Cardiol201872131532155310.1016/j.jacc.2018.06.074Open DOISearch in Google Scholar
Corp A, Thomas C, Adlam M. The cardiovascular effects of positive pressure ventilation. BJA Educ. 2021;21(6):202–209. doi:10.1016/j.bjae.2021.01.002CorpAThomasCAdlamMThe cardiovascular effects of positive pressure ventilationBJA Educ202121620220910.1016/j.bjae.2021.01.002Open DOISearch in Google Scholar
Liu YY, Li LF. Ventilator-induced diaphragm dysfunction in critical illness. Exp Biol Med Maywood NJ. 2018;243(17–18):1329–1337. doi:10.1177/1535370218811950LiuYYLiLFVentilator-induced diaphragm dysfunction in critical illnessExp Biol Med Maywood NJ201824317–181329133710.1177/1535370218811950Open DOISearch in Google Scholar
BaHammam AS, Singh TD, Gupta R, Pandi-Perumal SR. Choosing the Proper Interface for Positive Airway Pressure Therapy in Subjects With Acute Respiratory Failure. Respir Care. 2018;63(2):227–237. doi:10.4187/respcare.05787BaHammamASSinghTDGuptaRPandi-PerumalSRChoosing the Proper Interface for Positive Airway Pressure Therapy in Subjects With Acute Respiratory FailureRespir Care201863222723710.4187/respcare.05787Open DOISearch in Google Scholar
Reina Ferragut CM. [Control and assist-control modes of mechanical ventilation]. An Pediatr Barc Spain 2003. 2003;59(1):82–85. doi:10.1016/s1695-4033(03)78154-5Reina FerragutCM[Control and assist-control modes of mechanical ventilation]An Pediatr Barc Spain 20032003591828510.1016/s1695-4033(03)78154-5Open DOISearch in Google Scholar
Hess DR, Kacmarek RM. Essentials of Mechanical Ventilation, Third Edition. McGraw Hill Professional; 2014.HessDRKacmarekRMEssentials of Mechanical VentilationThird EditionMcGraw Hill Professional2014Search in Google Scholar
Ball L, Sutherasan Y, Fiorito M, et al. Effects of Different Levels of Variability and Pressure Support Ventilation on Lung Function in Patients With Mild-Moderate Acute Respiratory Distress Syndrome. Front Physiol. 2021;12:725738. doi:10.3389/fphys.2021.725738BallLSutherasanYFioritoMEffects of Different Levels of Variability and Pressure Support Ventilation on Lung Function in Patients With Mild-Moderate Acute Respiratory Distress SyndromeFront Physiol20211272573810.3389/fphys.2021.725738Open DOISearch in Google Scholar
Sutherasan Y, D'Antini D, Pelosi P. Advances in ventilator-associated lung injury: prevention is the target. Expert Rev Respir Med. 2014;8(2):233–248. doi:10.1586/17476348.2014.890519SutherasanYD'AntiniDPelosiPAdvances in ventilator-associated lung injury: prevention is the targetExpert Rev Respir Med20148223324810.1586/17476348.2014.890519Open DOISearch in Google Scholar
Bora V, Pulijal SV. Transesophageal Echocardiography in Critical Care. Curr Pulmonol Rep. 2024;13(2):152–172. doi:10.1007/s13665-024-00351-2BoraVPulijalSVTransesophageal Echocardiography in Critical CareCurr Pulmonol Rep202413215217210.1007/s13665-024-00351-2Open DOISearch in Google Scholar
Guérin C, Albert RK, Beitler J, et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med. 2020;46(12):2385–2396. doi:10.1007/s00134-020-06306-wGuérinCAlbertRKBeitlerJProne position in ARDS patients: why, when, how and for whomIntensive Care Med202046122385239610.1007/s00134-020-06306-wOpen DOISearch in Google Scholar
De Jong A, Chanques G, Jaber S. Mechanical ventilation in obese ICU patients: from intubation to extubation. Crit Care. 2017;21(1):63. doi:10.1186/s13054-017-1641-1De JongAChanquesGJaberSMechanical ventilation in obese ICU patients: from intubation to extubationCrit Care20172116310.1186/s13054-017-1641-1Open DOISearch in Google Scholar
Hillis GS, Bloomfield P. Basic transthoracic echocardiography. BMJ. 2005;330(7505):1432–1436.HillisGSBloomfieldPBasic transthoracic echocardiographyBMJ2005330750514321436Search in Google Scholar
Huang SJ, McLean AS. Appreciating the Strengths and Weaknesses of Transthoracic Echocardiography in Hemodynamic Assessments. Cardiol Res Pract. 2012;2012(1):894308. doi:10.1155/2012/894308HuangSJMcLeanASAppreciating the Strengths and Weaknesses of Transthoracic Echocardiography in Hemodynamic AssessmentsCardiol Res Pract20122012189430810.1155/2012/894308Open DOISearch in Google Scholar
Boles JM, Bion J, Connors A, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033–1056. doi:10.1183/09031936.00010206BolesJMBionJConnorsAWeaning from mechanical ventilationEur Respir J20072951033105610.1183/09031936.00010206Open DOISearch in Google Scholar
Cook D, Meade M, Guyatt G, Griffith G, Booker L. Criteria for weaning from mechanical ventilation. In: Database of Abstracts of Reviews of Effects (DARE): Quality-Assessed Reviews [Internet]. Centre for Reviews and Dissemination (UK); 2000. Accessed December 18, 2024. https://www.ncbi.nlm.nih.gov/books/NBK68028/CookDMeadeMGuyattGGriffithGBookerLCriteria for weaning from mechanical ventilationIn:Database of Abstracts of Reviews of Effects (DARE): Quality-Assessed Reviews [Internet]Centre for Reviews and Dissemination (UK)2000Accessed December 18, 2024. https://www.ncbi.nlm.nih.gov/books/NBK68028/Search in Google Scholar
Schifelbain LM, Vieira SRR, Brauner JS, Pacheco DM, Naujorks AA. Echocardiographic evaluation during weaning from mechanical ventilation. Clinics. 2011;66(1):107–111. doi:10.1590/S1807-59322011000100019SchifelbainLMVieiraSRRBraunerJSPachecoDMNaujorksAAEchocardiographic evaluation during weaning from mechanical ventilationClinics201166110711110.1590/S1807-59322011000100019Open DOISearch in Google Scholar
Caille V, Amiel JB, Charron C, Belliard G, Vieillard-Baron A, Vignon P. Echocardiography: a help in the weaning process. Crit Care. 2010;14(3):R120. doi:10.1186/cc9076CailleVAmielJBCharronCBelliardGVieillard-BaronAVignonPEchocardiography: a help in the weaning processCrit Care2010143R12010.1186/cc9076Open DOISearch in Google Scholar
Badran H mahfouz, Ahmed M kamel, Beshay MM, Zein FEA. A comparative study between transthoracic and transesophageal echo modalities in evaluation of left ventricular deformation. Egypt Heart J. 2019;71:4. doi:10.1186/s43044-019-0004-4mahfouzBadran HkamelAhmed MBeshayMMZeinFEAA comparative study between transthoracic and transesophageal echo modalities in evaluation of left ventricular deformationEgypt Heart J201971410.1186/s43044-019-0004-4Open DOISearch in Google Scholar
Roberts SM, Klick J, Fischl A, King TS, Cios TJ. A Comparison of Transesophageal to Transthoracic Echocardiographic Measures of Right Ventricular Function. J Cardiothorac Vasc Anesth. 2020;34(5):1252–1259. doi:10.1053/j.jvca.2019.11.039RobertsSMKlickJFischlAKingTSCiosTJA Comparison of Transesophageal to Transthoracic Echocardiographic Measures of Right Ventricular FunctionJ Cardiothorac Vasc Anesth20203451252125910.1053/j.jvca.2019.11.039Open DOISearch in Google Scholar
Omerovic S, Jain A. Echocardiogram. In: StatPearls. StatPearls Publishing; 2025. Accessed March 11, 2025. http://www.ncbi.nlm.nih.gov/books/NBK558940/OmerovicSJainAEchocardiogramIn:StatPearlsStatPearls Publishing2025Accessed March 11, 2025. http://www.ncbi.nlm.nih.gov/books/NBK558940/Search in Google Scholar
Schifelbain LM, Vieira SRR, Brauner JS, Pacheco DM, Naujorks AA. Echocardiographic evaluation during weaning from mechanical ventilation. Clinics. 2011;66(1):107–111. doi:10.1590/S1807-59322011000100019SchifelbainLMVieiraSRRBraunerJSPachecoDMNaujorksAAEchocardiographic evaluation during weaning from mechanical ventilationClinics201166110711110.1590/S1807-59322011000100019Open DOISearch in Google Scholar
Nickson C. Spontaneous Breathing Trial. Life in the Fast Lane • LITFL. January 1, 2019. Accessed December 18, 2024. https://litfl.com/spontaneous-breathing-trial/NicksonCSpontaneous Breathing TrialLife in the Fast Lane • LITFL. January 1, 2019. Accessed December 18, 2024. https://litfl.com/spontaneous-breathing-trial/Search in Google Scholar
French Intensive Care Society, International congress - Réanimation 2016. Ann Intensive Care. 2016;6(Suppl 1):50. doi:10.1186/s13613-016-0114-zFrench Intensive Care Society, International congress - Réanimation 2016Ann Intensive Care20166Suppl 15010.1186/s13613-016-0114-zOpen DOISearch in Google Scholar
Pourhoseingholi MA, Baghestani AR, Vahedi M. How to control confounding effects by statistical analysis. Gastroenterol Hepatol Bed Bench. 2012;5(2):79–83.PourhoseingholiMABaghestaniARVahediMHow to control confounding effects by statistical analysisGastroenterol Hepatol Bed Bench2012527983Search in Google Scholar
Nair GB, Niederman MS. Ventilator-associated pneumonia: present understanding and ongoing debates. Intensive Care Med. 2015;41(1):34–48. doi:10.1007/s00134-014-3564-5NairGBNiedermanMSVentilator-associated pneumonia: present understanding and ongoing debatesIntensive Care Med2015411344810.1007/s00134-014-3564-5Open DOISearch in Google Scholar
Povlsen AL, Helgestad OKL, Josiassen J, et al. Invasive mechanical ventilation in cardiogenic shock complicating acute myocardial infarction: A contemporary Danish cohort analysis. Int J Cardiol. 2024;405:131910. doi:10.1016/j.ijcard.2024.131910PovlsenALHelgestadOKLJosiassenJInvasive mechanical ventilation in cardiogenic shock complicating acute myocardial infarction: A contemporary Danish cohort analysisInt J Cardiol202440513191010.1016/j.ijcard.2024.131910Open DOISearch in Google Scholar
Strait JB, Lakatta EG. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail Clin. 2012;8(1):143–164. doi:10.1016/j.hfc.2011.08.011StraitJBLakattaEGAging-associated cardiovascular changes and their relationship to heart failureHeart Fail Clin20128114316410.1016/j.hfc.2011.08.011Open DOISearch in Google Scholar
Ibarz M, Haas LEM, Ceccato A, Artigas A. The critically ill older patient with sepsis: a narrative review. Ann Intensive Care. 2024;14:6. doi:10.1186/s13613-023-01233-7IbarzMHaasLEMCeccatoAArtigasAThe critically ill older patient with sepsis: a narrative reviewAnn Intensive Care202414610.1186/s13613-023-01233-7Open DOISearch in Google Scholar
Hart EC, Joyner MJ, Wallin BG, et al. Age-related differences in the sympathetic-hemodynamic balance in men. Hypertens Dallas Tex 1979. 2009;54(1):127–133. doi:10.1161/HYPERTENSIONAHA.109.131417HartECJoynerMJWallinBGAge-related differences in the sympathetic-hemodynamic balance in menHypertens Dallas Tex 1979200954112713310.1161/HYPERTENSIONAHA.109.131417Open DOISearch in Google Scholar
Crasto W, Patel V, Davies MJ, Khunti K. Prevention of Microvascular Complications of Diabetes. Endocrinol Metab Clin North Am. 2021;50(3):431–455. doi:10.1016/j.ecl.2021.05.005CrastoWPatelVDaviesMJKhuntiKPrevention of Microvascular Complications of DiabetesEndocrinol Metab Clin North Am202150343145510.1016/j.ecl.2021.05.005Open DOISearch in Google Scholar
Zakir M, Ahuja N, Surksha MA, et al. Cardiovascular Complications of Diabetes: From Microvascular to Macrovascular Pathways. Cureus. 15(9):e45835. doi:10.7759/cureus.45835ZakirMAhujaNSurkshaMACardiovascular Complications of Diabetes: From Microvascular to Macrovascular PathwaysCureus159e4583510.7759/cureus.45835Open DOISearch in Google Scholar
Alviar CL, Miller PE, McAreavey D, et al. Positive Pressure Ventilation in the Cardiac Intensive Care Unit. J Am Coll Cardiol. 2018;72(13):1532–1553. doi:10.1016/j.jacc.2018.06.074AlviarCLMillerPEMcAreaveyDPositive Pressure Ventilation in the Cardiac Intensive Care UnitJ Am Coll Cardiol201872131532155310.1016/j.jacc.2018.06.074Open DOISearch in Google Scholar
Lai C, Shi R, Beurton A, et al. The increase in cardiac output induced by a decrease in positive end-expiratory pressure reliably detects volume responsiveness: the PEEP-test study. Crit Care. 2023;27(1):136. doi:10.1186/s13054-023-04424-7LaiCShiRBeurtonAThe increase in cardiac output induced by a decrease in positive end-expiratory pressure reliably detects volume responsiveness: the PEEP-test studyCrit Care202327113610.1186/s13054-023-04424-7Open DOISearch in Google Scholar
Vignon P, Mentec H, Terré S, Gastinne H, Guéret P, Lemaire F. Diagnostic accuracy and therapeutic impact of transthoracic and transesophageal echocardiography in mechanically ventilated patients in the ICU. Chest. 1994;106(6):1829–1834. doi:10.1378/chest.106.6.1829VignonPMentecHTerréSGastinneHGuéretPLemaireFDiagnostic accuracy and therapeutic impact of transthoracic and transesophageal echocardiography in mechanically ventilated patients in the ICUChest199410661829183410.1378/chest.106.6.1829Open DOISearch in Google Scholar
Naik BI, Lynch C, Durbin CG. Variability in Mechanical Ventilation: What's All the Noise About? Respir Care. 2015;60(8):1203–1210. doi:10.4187/respcare.03794NaikBILynchCDurbinCGVariability in Mechanical Ventilation: What's All the Noise About?Respir Care20156081203121010.4187/respcare.03794Open DOISearch in Google Scholar
Spieth PM, Carvalho AR, Güldner A, et al. Pressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure support. Crit Care Med. 2011;39(4):746–755. doi:10.1097/CCM.0b013e318206bda6SpiethPMCarvalhoARGüldnerAPressure support improves oxygenation and lung protection compared to pressure-controlled ventilation and is further improved by random variation of pressure supportCrit Care Med201139474675510.1097/CCM.0b013e318206bda6Open DOISearch in Google Scholar
Mauri T, Cambiaghi B, Spinelli E, Langer T, Grasselli G. Spontaneous breathing: a double-edged sword to handle with care. Ann Transl Med. 2017;5(14):292. doi:10.21037/atm.2017.06.55MauriTCambiaghiBSpinelliELangerTGrasselliGSpontaneous breathing: a double-edged sword to handle with careAnn Transl Med201751429210.21037/atm.2017.06.55Open DOISearch in Google Scholar
Frazier SK, Stone KS, Moser D, et al. Hemodynamic changes during discontinuation of mechanical ventilation in medical intensive care unit patients. Am J Crit Care Off Publ Am Assoc Crit-Care Nurses. 2006;15(6):580–593; quiz 594.FrazierSKStoneKSMoserDHemodynamic changes during discontinuation of mechanical ventilation in medical intensive care unit patientsAm J Crit Care Off Publ Am Assoc Crit-Care Nurses2006156580593quiz 594.Search in Google Scholar
Elgazzzar AGM, Essawy T, Aglan B, Rezk E, Mahdy EW. Effect of different modes of mechanical ventilation on chronic obstructive pulmonary disease patients with respiratory failure regarding echocardiographic changes and diaphragmatic ultrasound. Benha Med J. 2022;39(1):62–74. doi:10.21608/bmfj.2021.102965.1508ElgazzzarAGMEssawyTAglanBRezkEMahdyEWEffect of different modes of mechanical ventilation on chronic obstructive pulmonary disease patients with respiratory failure regarding echocardiographic changes and diaphragmatic ultrasoundBenha Med J2022391627410.21608/bmfj.2021.102965.1508Open DOISearch in Google Scholar
Tongyoo S, Thomrongpairoj P, Permpikul C. Efficacy of echocardiography during spontaneous breathing trial with low-level pressure support for predicting weaning failure among medical critically ill patients. Echocardiography. 2019;36(4):659–665. doi:10.1111/echo.14306TongyooSThomrongpairojPPermpikulCEfficacy of echocardiography during spontaneous breathing trial with low-level pressure support for predicting weaning failure among medical critically ill patientsEchocardiography201936465966510.1111/echo.14306Open DOISearch in Google Scholar
Poelaert JI, Visser CA, Everaert JA, Koolen JJ, Colardyn FA. Acute hemodynamic changes of pressure-controlled inverse ratio ventilation in the adult respiratory distress syndrome. A transesophageal echocardiographic and Doppler study. Chest. 1993;104(1):214–219. doi:10.1378/chest.104.1.214PoelaertJIVisserCAEveraertJAKoolenJJColardynFAAcute hemodynamic changes of pressure-controlled inverse ratio ventilation in the adult respiratory distress syndrome. A transesophageal echocardiographic and Doppler studyChest1993104121421910.1378/chest.104.1.214Open DOISearch in Google Scholar
Oh JK, Seward JB, Khandheria BK, et al. Transesophageal echocardiography in critically III patients. Am J Cardiol. 1990;66(20):1492–1495. doi:10.1016/0002-9149(90)90541-8OhJKSewardJBKhandheriaBKTransesophageal echocardiography in critically III patientsAm J Cardiol199066201492149510.1016/0002-9149(90)90541-8Open DOISearch in Google Scholar
Si X, Ma J, Cao DY, et al. Transesophageal echocardiography instead or in addition to transthoracic echocardiography in evaluating haemodynamic problems in intubated critically ill patients. Ann Transl Med. 2020;8(12):785–785. doi:10.21037/atm.2020.04.09SiXMaJCaoDYTransesophageal echocardiography instead or in addition to transthoracic echocardiography in evaluating haemodynamic problems in intubated critically ill patientsAnn Transl Med202081278578510.21037/atm.2020.04.09Open DOISearch in Google Scholar
Mauri T, Lazzeri M, Bronco A, Bellani G, Pesenti A. Effects of Variable Pressure Support Ventilation on Regional Homogeneity and Aeration. Am J Respir Crit Care Med. 2017;195(5):e27–e28. doi:10.1164/rccm.201609-1806IMMauriTLazzeriMBroncoABellaniGPesentiAEffects of Variable Pressure Support Ventilation on Regional Homogeneity and AerationAm J Respir Crit Care Med20171955e27e2810.1164/rccm.201609-1806IMOpen DOISearch in Google Scholar
Wysocki M, Cracco C, Teixeira A, et al. Reduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilation. Crit Care Med. 2006;34(8):2076–2083. doi:10.1097/01.CCM.0000227175.83575.E9WysockiMCraccoCTeixeiraAReduced breathing variability as a predictor of unsuccessful patient separation from mechanical ventilationCrit Care Med20063482076208310.1097/01.CCM.0000227175.83575.E9Open DOISearch in Google Scholar
Kiss T, Güldner A, Bluth T, et al. Rationale and study design of ViPS – variable pressure support for weaning from mechanical ventilation: study protocol for an international multicenter randomized controlled open trial. Trials. 2013;14:363. doi:10.1186/1745-6215-14-363KissTGüldnerABluthTRationale and study design of ViPS – variable pressure support for weaning from mechanical ventilation: study protocol for an international multicenter randomized controlled open trialTrials20131436310.1186/1745-6215-14-363Open DOISearch in Google Scholar
Rolland-Debord C, Poitou T, Bureau C, Rivals I, Similowski T, Demoule A. Decreased breathing variability is associated with poorer outcome in mechanically ventilated patients. ERJ Open Res. 2023;9(3):00544–02022. doi:10.1183/23120541.00544-2022Rolland-DebordCPoitouTBureauCRivalsISimilowskiTDemouleADecreased breathing variability is associated with poorer outcome in mechanically ventilated patientsERJ Open Res202393005440202210.1183/23120541.00544-2022Open DOISearch in Google Scholar
Abreu PDMG de. Evaluation of Variable Pressure Support Ventilation in the Therapy of Acute Lung Injury (EVA-Trial). clinicaltrials.gov; 2012. Accessed December 20, 2024. https://clinicaltrials.gov/study/NCT00786292Abreu PDMG deEvaluation of Variable Pressure Support Ventilation in the Therapy of Acute Lung Injury (EVA-Trial)clinicaltrials.gov; 2012. Accessed December 20, 2024. https://clinicaltrials.gov/study/NCT00786292Search in Google Scholar