[
Anderson, D L., & Morgan, M J. (2007). Genetic and morphological variation of bee-parasitic Tropilaelaps mites (Acari: Laelapidae): new and re-defined species. Experimental and Applied Acarology, 43(1), 1-24. DOI: 10.1007/s10493-007-9103-0
]Search in Google Scholar
[
Anderson, D. L., & Roberts, J. M. K. (2013). Standard methods for Tropilaelaps mite research. In: The COLOSS BEEBOOK, Volume II: Standard methods for Apis mellifera pest and pathogen research, Dietemann V., Ellis J.D., Neumann P., eds. Journal of Apicultural Research, 52(4), 1–16. https://doi.org/10.3896/IBRA.1.52.4.21
]Search in Google Scholar
[
Brandorf A., Ivoilova, M. M., Yañez, O., Neumann, P., Soroker, V. (2024). First report of established mite populations, Tropilaelaps mercedesae, in Europe. Journal of Apicultural Research, 1-3 DOI: 10.1080/00218839.2024.2343976
]Search in Google Scholar
[
Buawangpong, N., de Guzman, L. I., Khongphinitbunjong, K., Frake, A. M., Burgett, M., Chantawannakul, P. (2015). Prevalence and reproduction of Tropilaelaps mercedesae and Varroa destructor in concurrently infested Apis mellifera colonies. Apidologie, 46, 779-786. DOI: 10.1007/s13592-015-0368-8
]Search in Google Scholar
[
Chantawannakul, P., Ramsey, S., Vanengelsdorp, D., Khongphinitbunjong, K., Phokasem, P. (2018). Tropilaelaps mite: An emerging threat to European honey bee. Current Opinion in Insect Science, 26, 69-75. https://doi.org/10.1016/j.cois.2018.01.012
]Search in Google Scholar
[
Cilia, G., Flaminio, S., Quaranta, M. (2022). A novel and non-invasive method for DNA extraction from dry bee specimens. Scientific Reports, 12, 11679. https://doi.org/10.1038/s41598-022-15595-8
]Search in Google Scholar
[
de Guzman LI, Williams GR, Khongphinitbunjong K, Chantawannakul P. (2017). Ecology, life history, and management of Tropilaelaps mites. Journal of Economic Entomology, 110(2), 319-332. DOI: 10.1093/jee/tow304. PMID: 28334185
]Search in Google Scholar
[
Folmer, O., Black, M., Hoeh W., Lutz R., Vrijenhoek R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294-299
]Search in Google Scholar
[
Moshaverinia, A., Abedi, V., Safaei, H. (2013). Mite infestation of honey bee (Apis mellifera) in apiaries of North East of Iran. Scientia Parasitologica, 14(1), 31-35.
]Search in Google Scholar
[
Namin, M. S., Joharchi, O., Aryal, S., Thapa, R., Kwon, S.-H., Kakhramanov, B. A., Jung, C. (2024). Exploring genetic variation and phylogenetic patterns of Tropilaelaps mercedesae (Mesostigmata: Laelapidae) populations in Asia. Frontiers in Ecology and Evolution, 12. 1-8. https://doi.org/10.3389/fevo.2024.1275995
]Search in Google Scholar
[
Shahrouzi, R. Natural and chemical control of Varroa destructor and Tropilaelaps mercedesae in Afghanistan. Retrived July 22, 2024, from https://www.apiservices.biz/documents/articles-en/natural_chemical_control_%20of_varroa.pdf
]Search in Google Scholar
[
Tiritelli, R., Flaminio, S., Zavatta, L., Ranalli, R., Giovanetti, M., Grasso, … Cilia, G. (2024). Ecological and social factors influence interspecific pathogens occurrence among bees. Scientific Reports, 14(1), 5136.
]Search in Google Scholar
[
Truong, A. T., Yoo, M. S., Yun, B. R., Kang, J. E., Noh, J., Hwang, T. J., ... Cho, Y. S. (2023). Prevalence and pathogen detection of Varroa and Tropilaelaps mites in Apis mellifera (Hymenoptera, Apidae) apiaries in South Korea. Journal of Apicultural Research, 62(4), 804-812. DOI:10.1080/002188392021.2013425
]Search in Google Scholar