Zacytuj

Ahima, R. S. (2016). Principles of energy homeostasis. In: Ahima, R. S. (Eds.), Metabolic Syndrome: A Comprehensive Textbook (pp. 311–326). Springer International Publishing, Cham. AhimaR. S. 2016 Principles of energy homeostasis In: AhimaR. S. (Eds.), Metabolic Syndrome: A Comprehensive Textbook 311 326 Springer International Publishing Cham 10.1007/978-3-319-11251-0_48 Search in Google Scholar

Ahn, K., Xie, X., Riddle, J., Pettis, J., Huang, Z. Y. (2012). Effects of long distance transportation on honey bee physiology. Psyche, 2012. https://doi.org/10.1155/2012/193029 AhnK. XieX. RiddleJ. PettisJ. HuangZ. Y. 2012 Effects of long distance transportation on honey bee physiology Psyche 2012 https://doi.org/10.1155/2012/193029 10.1155/2012/193029 Search in Google Scholar

Aizen, M. A., & Harder, L. D. (2009). The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Current Biology, 19(11), 915–918. https://doi.org/10.1016/j.cub.2009.03.071 AizenM. A. HarderL. D. 2009 The global stock of domesticated honey bees is growing slower than agricultural demand for pollination Current Biology 19 11 915 918 https://doi.org/10.1016/j.cub.2009.03.071 10.1016/j.cub.2009.03.07119427214 Search in Google Scholar

Alaux, C., Brunet, J. L., Dussaubat, C., Mondet, F., Tchamitchan, S., Cousin, M., … Le Conte, Y. (2010a). Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, 12(3), 774–782. https://doi.org/10.1111/j.1462-2920.2009.02123.x AlauxC. BrunetJ. L. DussaubatC. MondetF. TchamitchanS. CousinM. Le ConteY. 2010a Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera) Environmental Microbiology 12 3 774 782 https://doi.org/10.1111/j.1462-2920.2009.02123.x 10.1111/j.1462-2920.2009.02123.x284719020050872 Search in Google Scholar

Alaux, C., Crauser, D., Pioz, M., Saulnier, C., Le Conte, Y. (2014). Parasitic and immune modulation of flight activity in honey bees tracked with optical counters. Journal of Experimental Biology, 217(19), 3416–3424. https://doi.org/10.1242/jeb.105783 AlauxC. CrauserD. PiozM. SaulnierC. Le ConteY. 2014 Parasitic and immune modulation of flight activity in honey bees tracked with optical counters Journal of Experimental Biology 217 19 3416 3424 https://doi.org/10.1242/jeb.105783 10.1242/jeb.10578325063861 Search in Google Scholar

Alaux, C., Dantec, C., Parrinello, H., Le Conte, Y. (2011). Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC Genomics, 12, 496. https://doi.org/10.1186/1471-2164-12-496 AlauxC. DantecC. ParrinelloH. Le ConteY. 2011 Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees BMC Genomics 12 496 https://doi.org/10.1186/1471-2164-12-496 10.1186/1471-2164-12-496320967021985689 Search in Google Scholar

Alaux, C., Ducloz, F., Crauser, D., Le Conte, Y. (2010b). Diet effects on honeybee immunocompetence. Biology Letters, 6(4), 562–565. https://doi.org/10.1098/rsbl.2009.0986 AlauxC. DuclozF. CrauserD. Le ConteY. 2010b Diet effects on honeybee immunocompetence Biology Letters 6 4 562 565 https://doi.org/10.1098/rsbl.2009.0986 10.1098/rsbl.2009.0986293619620089536 Search in Google Scholar

Albrecht, H. (2005). Development of arable weed seedbanks during the 6 years after the change from conventional to organic farming. Weed Research, 45(5), 339–350. https://doi.org/10.1111/j.1365-3180.2005.00472.x AlbrechtH. 2005 Development of arable weed seedbanks during the 6 years after the change from conventional to organic farming Weed Research 45 5 339 350 https://doi.org/10.1111/j.1365-3180.2005.00472.x 10.1111/j.1365-3180.2005.00472.x Search in Google Scholar

Aldea, P., & Bozinovic, F. (2020). The energetic and survival costs of Varroa parasitism in honeybees. Apidologie, 51, 997–1005. https://doi.org/10.1007/s13592-020-00777-y AldeaP. BozinovicF. 2020 The energetic and survival costs of Varroa parasitism in honeybees Apidologie 51 997 1005 https://doi.org/10.1007/s13592-020-00777-y 10.1007/s13592-020-00777-y Search in Google Scholar

Allen, M., & Ball, B. (1996). The incidence and world distribution of honey bee viruses. Bee World, 77(3), 141–162. https://doi.org/10.1080/0005772X.1996.11099306 AllenM. BallB. 1996 The incidence and world distribution of honey bee viruses Bee World 77 3 141 162 https://doi.org/10.1080/0005772X.1996.11099306 10.1080/0005772X.1996.11099306 Search in Google Scholar

Amdam, G. V., & Omholt, S. W. (2003). The hive bee to forager transition in honeybee colonies: the double repressor hypothesis. Journal of Theoretical Biology, 223(4), 451–464. https://doi.org/10.1016/S0022-5193(03)00121-8 AmdamG. V. OmholtS. W. 2003 The hive bee to forager transition in honeybee colonies: the double repressor hypothesis Journal of Theoretical Biology 223 4 451 464 https://doi.org/10.1016/S0022-5193(03)00121-810.1016/S0022-5193(03)00121-8 Search in Google Scholar

Antúnez, K., Harriet, J., Gende, L., Maggi, M., Eguaras, M., Zunino, P. (2008). Efficacy of natural propolis extract in the control of American Foulbrood. Veterinary Microbiology, 131(3–4), 324–331. https://doi.org/10.1016/j.vetmic.2008.04.011 AntúnezK. HarrietJ. GendeL. MaggiM. EguarasM. ZuninoP. 2008 Efficacy of natural propolis extract in the control of American Foulbrood Veterinary Microbiology 131 3–4 324 331 https://doi.org/10.1016/j.vetmic.2008.04.011 10.1016/j.vetmic.2008.04.01118508208 Search in Google Scholar

Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P., Higes, M. (2009). Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environmental Microbiology, 11(9), 2284–2290. https://doi.org/10.1111/j.1462-2920.2009.01953.x AntúnezK. Martín-HernándezR. PrietoL. MeanaA. ZuninoP. HigesM. 2009 Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia) Environmental Microbiology 11 9 2284 2290 https://doi.org/10.1111/j.1462-2920.2009.01953.x 10.1111/j.1462-2920.2009.01953.x19737304 Search in Google Scholar

Aufauvre, J., Misme-Aucouturier, B., Viguès, B., Texier, C., Delbac, F., Blot, N. (2014). Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS One, 9(3), e91686. https://doi.org/10.1371/journal.pone.0091686 AufauvreJ. Misme-AucouturierB. ViguèsB. TexierC. DelbacF. BlotN. 2014 Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides PLoS One 9 3 e91686 https://doi.org/10.1371/journal.pone.0091686 10.1371/journal.pone.0091686396015724646894 Search in Google Scholar

Baena-González, E. (2010). Energy signalling in the regulation of gene expression during stress. Molecular Plant, 3(2), 300–313. https://doi.org/10.1093/mp/ssp113 Baena-GonzálezE. 2010 Energy signalling in the regulation of gene expression during stress Molecular Plant 3 2 300 313 https://doi.org/10.1093/mp/ssp113 10.1093/mp/ssp11320080814 Search in Google Scholar

Balieira, K. V. B., Mazzo, M., Bizerra, P. F. V., Guimarães, A. R. D. J. S., Nicodemo, D., Mingatto, F. E. (2018). Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine. Apidologie, 49(5), 562–572. https://doi.org/10.1007/s13592-018-0583-1 BalieiraK. V. B. MazzoM. BizerraP. F. V. GuimarãesA. R. D. J. S. NicodemoD. MingattoF. E. 2018 Imidacloprid-induced oxidative stress in honey bees and the antioxidant action of caffeine Apidologie 49 5 562 572 https://doi.org/10.1007/s13592-018-0583-1 10.1007/s13592-018-0583-1 Search in Google Scholar

Ball, B. V., & Allen, M. F. (1988). The prevalence of pathogens in honey bee (Apis mellifera) colonies infested with the parasitic mite Varroa jacobsoni. Annals of Applied Biology, 113(2), 237–244. https://doi.org/10.1111/j.1744-7348.1988.tb03300.x BallB. V. AllenM. F. 1988 The prevalence of pathogens in honey bee (Apis mellifera) colonies infested with the parasitic mite Varroa jacobsoni Annals of Applied Biology 113 2 237 244 https://doi.org/10.1111/j.1744-7348.1988.tb03300.x 10.1111/j.1744-7348.1988.tb03300.x Search in Google Scholar

Bascompte, J., Jordano, P., Olesen, J. M. (2006). Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312(5772), 431–433. https://doi.org/10.1126/science.1123412 BascompteJ. JordanoP. OlesenJ. M. 2006 Asymmetric coevolutionary networks facilitate biodiversity maintenance Science 312 5772 431 433 https://doi.org/10.1126/science.1123412 10.1126/science.112341216627742 Search in Google Scholar

Belzunces, L. P., Tchamitchian, S., Brunet, J. L. (2012). Neural effects of insecticides in the honey bee. Apidologie, 43(3), 348–370. https://doi.org/10.1007/s13592-012-0134-0 BelzuncesL. P. TchamitchianS. BrunetJ. L. 2012 Neural effects of insecticides in the honey bee Apidologie 43 3 348 370 https://doi.org/10.1007/s13592-012-0134-0 10.1007/s13592-012-0134-0 Search in Google Scholar

Bhatnagar, P., Lata, P., Singh, F., Singh, S. (2020). Hive Products and Their Uses. Biotica Research Today, 2(8), 808–811. BhatnagarP. LataP. SinghF. SinghS. 2020 Hive Products and Their Uses Biotica Research Today 2 8 808 811 Search in Google Scholar

Boman, H. G., & Hultmark, D. (1987). Cell-free immunity in insects. Annual Reviews of Microbiology, 41, 103–126. https://doi.org/10.1146/annurev.mi.41.100187.000535 BomanH. G. HultmarkD. 1987 Cell-free immunity in insects Annual Reviews of Microbiology 41 103 126 https://doi.org/10.1146/annurev.mi.41.100187.000535 10.1146/annurev.mi.41.100187.0005353318666 Search in Google Scholar

Boncristiani, H., Underwood, R., Schwarz, R., Evans, J. D., Pettis, J. (2012). Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. Journal of Insect Physiology, 58(5), 613–620. https://doi.org/10.1016/j.jinsphys.2011.12.011 BoncristianiH. UnderwoodR. SchwarzR. EvansJ. D. PettisJ. 2012 Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera Journal of Insect Physiology 58 5 613 620 https://doi.org/10.1016/j.jinsphys.2011.12.011 10.1016/j.jinsphys.2011.12.01122212860 Search in Google Scholar

Bordier, C., Dechatre, H., Suchail, S., Peruzzi, M., Soubeyrand, S., Pioz, M., … Alaux, C. (2017). Colony adaptive response to simulated heat waves and consequences at the individual level in honeybees (Apis mellifera). Scientific Reports, 7(2760). https://doi.org/10.1038/s41598-017-03944-x BordierC. DechatreH. SuchailS. PeruzziM. SoubeyrandS. PiozM. AlauxC. 2017 Colony adaptive response to simulated heat waves and consequences at the individual level in honeybees (Apis mellifera) Scientific Reports 7 2760 https://doi.org/10.1038/s41598-017-03944-x 10.1038/s41598-017-03944-x547657528630407 Search in Google Scholar

Brandt, A., Gorenflo, A., Siede, R., Meixner, M., Büchler, R. (2016). The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). Journal of Insect Physiology, 86, 40–47. https://doi.org/10.1016/j.jinsphys.2016.01.001 BrandtA. GorenfloA. SiedeR. MeixnerM. BüchlerR. 2016 The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.) Journal of Insect Physiology 86 40 47 https://doi.org/10.1016/j.jinsphys.2016.01.001 10.1016/j.jinsphys.2016.01.00126776096 Search in Google Scholar

Brandt, A., Grikscheit, K., Siede, R., Grosse, R., Meixner, M. D., Büchler, R. (2017). Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin. Scientific Reports, 7(4673). https://doi.org/10.1038/s41598-017-04734-1 BrandtA. GrikscheitK. SiedeR. GrosseR. MeixnerM. D. BüchlerR. 2017 Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin Scientific Reports 7 4673 https://doi.org/10.1038/s41598-017-04734-1 10.1038/s41598-017-04734-1549866428680118 Search in Google Scholar

Brodschneider, R., & Crailsheim, K. (2010). Nutrition and health in honey bees. Apidologie, 41(3), 278–294. https://doi.org/10.1051/apido/2010012 BrodschneiderR. CrailsheimK. 2010 Nutrition and health in honey bees Apidologie 41 3 278 294 https://doi.org/10.1051/apido/2010012 10.1051/apido/2010012 Search in Google Scholar

Brutscher, L. M., Daughenbaugh, K. F., Flenniken, M. L. (2015). Antiviral defense mechanisms in honey bees. Current Opinion in Insect Science, 10, 71–82. https://doi.org/10.1016/j.cois.2015.04.016 BrutscherL. M. DaughenbaughK. F. FlennikenM. L. 2015 Antiviral defense mechanisms in honey bees Current Opinion in Insect Science 10 71 82 https://doi.org/10.1016/j.cois.2015.04.016 10.1016/j.cois.2015.04.016453054826273564 Search in Google Scholar

Campbell, J., Kessler, B., Mayack, C., Naug, D. (2010). Behavioural fever in infected honeybees: parasitic manipulation or coincidental benefit? Parasitology, 137(10), 1487–1491. https://doi.org/10.1017/S0031182010000235 CampbellJ. KesslerB. MayackC. NaugD. 2010 Behavioural fever in infected honeybees: parasitic manipulation or coincidental benefit? Parasitology 137 10 1487 1491 https://doi.org/10.1017/S0031182010000235 10.1017/S003118201000023520500914 Search in Google Scholar

Cerenius, L., Lee, B. L., Söderhäll, K. (2008). The proPO-system: pros and cons for its role in invertebrate immunity. Trends in Immunology, 29(6), 263–271. https://doi.org/10.1016/j.it.2008.02.009 CereniusL. LeeB. L. SöderhällK. 2008 The proPO-system: pros and cons for its role in invertebrate immunity Trends in Immunology 29 6 263 271 https://doi.org/10.1016/j.it.2008.02.009 10.1016/j.it.2008.02.00918457993 Search in Google Scholar

Chaimanee, V., Chantawannakul, P., Chen, Y., Evans, J. D., Pettis, J. S. (2012). Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. Journal of Insect Physiology, 58(8), 1090–1095. https://doi.org/10.1016/j.jinsphys.2012.04.016 ChaimaneeV. ChantawannakulP. ChenY. EvansJ. D. PettisJ. S. 2012 Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae Journal of Insect Physiology 58 8 1090 1095 https://doi.org/10.1016/j.jinsphys.2012.04.016 10.1016/j.jinsphys.2012.04.01622609362 Search in Google Scholar

Chakrabarti, P., Carlson, E. A., Lucas, H. M., Melathopoulos, A. P., Sagili, R. R. (2020). Field rates of Sivanto™ (flupyradifurone) and Transform® (sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.). PLoS One, 15(5), e0233033. https://doi.org/10.1371/journal.pone.0233033 ChakrabartiP. CarlsonE. A. LucasH. M. MelathopoulosA. P. SagiliR. R. 2020 Field rates of Sivanto™ (flupyradifurone) and Transform® (sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.) PLoS One 15 5 e0233033 https://doi.org/10.1371/journal.pone.0233033 10.1371/journal.pone.0233033724178032437365 Search in Google Scholar

Chakrabarti, P., Rana, S., Sarkar, S., Smith, B., Basu, P. (2015). Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states. Apidologie, 46(1), 107–129. https://doi.org/10.1007/s13592-014-0308-z ChakrabartiP. RanaS. SarkarS. SmithB. BasuP. 2015 Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two Eastern Indian states Apidologie 46 1 107 129 https://doi.org/10.1007/s13592-014-0308-z 10.1007/s13592-014-0308-z Search in Google Scholar

Cheeseman, K. H. (1993). Mechanisms and effects of lipid peroxidation. Molecular Aspects of Medicine, 14(3), 191–197. https://doi.org/10.1016/0098-2997(93)90005-X CheesemanK. H. 1993 Mechanisms and effects of lipid peroxidation Molecular Aspects of Medicine 14 3 191 197 https://doi.org/10.1016/0098-2997(93)90005-X 10.1016/0098-2997(93)90005-X Search in Google Scholar

Claudianos, C., Ranson, H., Johnson, R. M., Biswas, S., Schuler, M. A., Berenbaum, M. R., Feyereisen, R., Oakeshott, J. G. (2006). A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology, 15(5), 615–636. https://doi.org/10.1111/j.1365-2583.2006.00672.x ClaudianosC. RansonH. JohnsonR. M. BiswasS. SchulerM. A. BerenbaumM. R. FeyereisenR. OakeshottJ. G. 2006 A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee Insect Molecular Biology 15 5 615 636 https://doi.org/10.1111/j.1365-2583.2006.00672.x 10.1111/j.1365-2583.2006.00672.x176113617069637 Search in Google Scholar

Clissold, F. J., Coggan, N., Simpson, S. J. (2013). Insect herbivores can choose microclimates to achieve nutritional homeostasis. Journal of Experimental Biology, 216(11), 2089–2096. https://doi.org/10.1242/jeb.078782 ClissoldF. J. CogganN. SimpsonS. J. 2013 Insect herbivores can choose microclimates to achieve nutritional homeostasis Journal of Experimental Biology 216 11 2089 2096 https://doi.org/10.1242/jeb.078782 10.1242/jeb.07878223430995 Search in Google Scholar

Corona, M., Branchiccela, B., Madella, S., Chen, Y., Evans, J. (2019). Decoupling the effects of nutrition, age and behavioral caste on honey bee physiology and immunity. BioRxiv, 667931. https://doi.org/10.1101/667931 CoronaM. BranchiccelaB. MadellaS. ChenY. EvansJ. 2019 Decoupling the effects of nutrition, age and behavioral caste on honey bee physiology and immunity BioRxiv 667931. https://doi.org/10.1101/667931 10.1101/667931 Search in Google Scholar

Cousin, M., Silva-Zacarin, E., Kretzschmar, A., El Maataoui, M., Brunet, J. L., Belzunces, L. P. (2013). Size changes in honey bee larvae oenocytes induced by exposure to paraquat at very low concentrations. PLoS One, 8(5), e65693. https://doi.org/10.1371/journal.pone.0065693 CousinM. Silva-ZacarinE. KretzschmarA. El MaataouiM. BrunetJ. L. BelzuncesL. P. 2013 Size changes in honey bee larvae oenocytes induced by exposure to paraquat at very low concentrations PLoS One 8 5 e65693 https://doi.org/10.1371/journal.pone.0065693 10.1371/journal.pone.0065693366578323724149 Search in Google Scholar

Cremer, S., Armitage, S. A., Schmid-Hempel, P. (2007). Socialimmunity. CurrentBiology, 17(16), R693–R702. https://doi.org/10.1016/j.cub.2007.06.008 CremerS. ArmitageS. A. Schmid-HempelP. 2007 Social immunity Current Biology 17 16 R693 R702 https://doi.org/10.1016/j.cub.2007.06.008 10.1016/B978-0-12-809633-8.90721-0 Search in Google Scholar

Currie, R. W., Pernal, S. F., Guzmán-Novoa, E. (2010). Honey bee colony losses in Canada. Journal of Apicultural Research, 49(1), 104–106. https://doi.org/10.3896/IBRA.1.49.1.18 CurrieR. W. PernalS. F. Guzmán-NovoaE. 2010 Honey bee colony losses in Canada Journal of Apicultural Research 49 1 104 106 https://doi.org/10.3896/IBRA.1.49.1.18 10.3896/IBRA.1.49.1.18 Search in Google Scholar

Dai, P., Yan, Z., Ma, S., Yang, Y., Wang, Q., Hou, C., … Diao, Q. (2018). The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro. Journal of Agricultural and Food Chemistry, 66(29), 7786–7793. https://doi.org/10.1021/acs.jafc.8b02212 DaiP. YanZ. MaS. YangY. WangQ. HouC. DiaoQ. 2018 The herbicide glyphosate negatively affects midgut bacterial communities and survival of honey bee during larvae reared in vitro Journal of Agricultural and Food Chemistry 66 29 7786 7793 https://doi.org/10.1021/acs.jafc.8b02212 10.1021/acs.jafc.8b0221229992812 Search in Google Scholar

Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L., Neumann, P. (2012a). Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees. Applied and Environmental Microbiology, 78(4), 981–987. https://doi.org/10.1128/AEM.06537-11 DainatB. EvansJ. D. ChenY. P. GauthierL. NeumannP. 2012a Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees Applied and Environmental Microbiology 78 4 981 987 https://doi.org/10.1128/AEM.06537-11 10.1128/AEM.06537-11327302822179240 Search in Google Scholar

Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L., Neumann, P. (2012b). Predictive markers of honey bee colony collapse. PLoS One, 7(2), e32151. https://doi.org/10.1371/journal.pone.0032151 DainatB. EvansJ. D. ChenY. P. GauthierL. NeumannP. 2012b Predictive markers of honey bee colony collapse PLoS One 7 2 e32151 https://doi.org/10.1371/journal.pone.0032151 10.1371/journal.pone.0032151328564822384162 Search in Google Scholar

Danihlík, J., Aronstein, K., Petřivalský, M. (2015). Antimicrobial peptides: a key component of honey bee innate immunity: Physiology, biochemistry, and chemical ecology. Journal of Apicultural Research, 54(2), 123–136. https://doi.org/10.1080/00218839.2015.1109919 DanihlíkJ. AronsteinK. PetřivalskýM. 2015 Antimicrobial peptides: a key component of honey bee innate immunity: Physiology, biochemistry, and chemical ecology Journal of Apicultural Research 54 2 123 136 https://doi.org/10.1080/00218839.2015.1109919 10.1080/00218839.2015.1109919 Search in Google Scholar

Danka, R. G., & Villa, J. D. (1998). Evidence of autogrooming as a mechanism of honey bee resistance to tracheal mite infestation. Journal of Apicultural Research, 37(1), 39–46. https://doi.org/10.1080/00218839.1998.11100953 DankaR. G. VillaJ. D. 1998 Evidence of autogrooming as a mechanism of honey bee resistance to tracheal mite infestation Journal of Apicultural Research 37 1 39 46 https://doi.org/10.1080/00218839.1998.11100953 10.1080/00218839.1998.11100953 Search in Google Scholar

Davies, M. J. (2016). Protein oxidation and peroxidation. Biochemical Journal, 473(7), 805–825. https://doi.org/10.1042/BJ20151227 DaviesM. J. 2016 Protein oxidation and peroxidation Biochemical Journal 473 7 805 825 https://doi.org/10.1042/BJ20151227 10.1042/BJ20151227481957027026395 Search in Google Scholar

DeGrandi-Hoffman, G., & Chen, Y. (2015). Nutrition, immunity and viral infections in honey bees. Current Opinion in Insect Science, 10, 170–176. https://doi.org/10.1016/j.cois.2015.05.007 DeGrandi-HoffmanG. ChenY. 2015 Nutrition, immunity and viral infections in honey bees Current Opinion in Insect Science 10 170 176 https://doi.org/10.1016/j.cois.2015.05.007 10.1016/j.cois.2015.05.00729588005 Search in Google Scholar

Di Prisco, G., Annoscia, D., Margiotta, M., Ferrara, R., Varricchio, P., Zanni, V., … Pennacchio, F. (2016). A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences, 113(12), 3203–3208. https://doi.org/10.1073/pnas.1523515113 Di PriscoG. AnnosciaD. MargiottaM. FerraraR. VarricchioP. ZanniV. PennacchioF. 2016 A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health Proceedings of the National Academy of Sciences 113 12 3203 3208 https://doi.org/10.1073/pnas.1523515113 10.1073/pnas.1523515113481273026951652 Search in Google Scholar

Di Prisco, G., Cavaliere, V., Annoscia, D., Varricchio, P., Caprio, E., Nazzi, F., Gargiulo, G., Pennacchio, F. (2013). Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proceedings of the National Academy of Sciences, 110(46), 18466–18471. https://doi.org/10.1073/pnas.1314923110 Di PriscoG. CavaliereV. AnnosciaD. VarricchioP. CaprioE. NazziF. GargiuloG. PennacchioF. 2013 Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees Proceedings of the National Academy of Sciences 110 46 18466 18471 https://doi.org/10.1073/pnas.1314923110 10.1073/pnas.1314923110383198324145453 Search in Google Scholar

Dickel, F., Münch, D., Amdam, G. V., Mappes, J., Freitak, D. (2018). Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. PLoS One, 13(1), e0191256. https://doi.org/10.1371/journal.pone.0191256 DickelF. MünchD. AmdamG. V. MappesJ. FreitakD. 2018 Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria PLoS One 13 1 e0191256 https://doi.org/10.1371/journal.pone.0191256 10.1371/journal.pone.0191256579198629385177 Search in Google Scholar

Eischen, F. A. (1987). Overwintering performance of honey bee colonies heavily infested with Acarapis woodi (Rennie). Apidologie, 18(4), 293–304. https://doi.org/10.1051/apido:19870401 EischenF. A. 1987 Overwintering performance of honey bee colonies heavily infested with Acarapis woodi (Rennie) Apidologie 18 4 293 304 https://doi.org/10.1051/apido:19870401 10.1051/apido:19870401 Search in Google Scholar

Esch, H. (1988). The effects of temperature on flight muscle potentials in honeybees and cuculiinid winter moths. Journal of Experimental Biology, 135, 109–117. EschH. 1988 The effects of temperature on flight muscle potentials in honeybees and cuculiinid winter moths Journal of Experimental Biology 135 109 117 10.1242/jeb.135.1.109 Search in Google Scholar

Evans, J. D., & Pettis, J. S. (2005). Colony-level impacts of immune responsiveness in honey bees, Apis mellifera. Evolution, 59(10), 2270–2274. https://doi.org/10.1111/j.0014-3820.2005.tb00935.x EvansJ. D. PettisJ. S. 2005 Colony-level impacts of immune responsiveness in honey bees, Apis mellifera Evolution 59 10 2270 2274 https://doi.org/10.1111/j.0014-3820.2005.tb00935.x 10.1111/j.0014-3820.2005.tb00935.x Search in Google Scholar

Evans, J. D., & Spivak, M. (2010). Socialized medicine: individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology, 103, S62–S72. https://doi.org/10.1016/j.jip.2009.06.019 EvansJ. D. SpivakM. 2010 Socialized medicine: individual and communal disease barriers in honey bees Journal of Invertebrate Pathology 103 S62 S72 https://doi.org/10.1016/j.jip.2009.06.019 10.1016/j.jip.2009.06.019 Search in Google Scholar

Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., … Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Molecular Biology, 15(5), 645–656. https://doi.org/10.1111/j.1365-2583.2006.00682.x EvansJ. D. AronsteinK. ChenY. P. HetruC. ImlerJ. L. JiangH. HultmarkD. 2006 Immune pathways and defence mechanisms in honey bees Apis mellifera Insect Molecular Biology 15 5 645 656 https://doi.org/10.1111/j.1365-2583.2006.00682.x 10.1111/j.1365-2583.2006.00682.x Search in Google Scholar

Farooqui, T. (2008). Iron-induced oxidative stress modulates olfactory learning and memory in honeybees. Behavioral Neuroscience, 122(2), 433–447. https://doi.org/10.1037/0735-7044.122.2.433 FarooquiT. 2008 Iron-induced oxidative stress modulates olfactory learning and memory in honeybees Behavioral Neuroscience 122 2 433 447 https://doi.org/10.1037/0735-7044.122.2.433 10.1037/0735-7044.122.2.433 Search in Google Scholar

Fievet, J., Tentcheva, D., Gauthier, L., De Miranda, J., Cousserans, F., Colin, M. E., Bergoin, M. (2006). Localization of deformed wing virus infection in queen and drone Apis mellifera L. Virology Journal, 3(16). https://doi.org/10.1186/1743-422X-3-16 FievetJ. TentchevaD. GauthierL. De MirandaJ. CousseransF. ColinM. E. BergoinM. 2006 Localization of deformed wing virus infection in queen and drone Apis mellifera L. Virology Journal 3 16 https://doi.org/10.1186/1743-422X-3-16 10.1186/1743-422X-3-16 Search in Google Scholar

Flores, J. M., Ruiz, J. A., Ruz, J. M., Puerta, F., Bustos, M., Padilla, F., Campano, F. (1996). Effect of temperature and humidity of sealed brood on chalkbrood development under controlled conditions. Apidologie, 27(4), 185–192. https://doi.org/10.1051/apido:19960401 FloresJ. M. RuizJ. A. RuzJ. M. PuertaF. BustosM. PadillaF. CampanoF. 1996 Effect of temperature and humidity of sealed brood on chalkbrood development under controlled conditions Apidologie 27 4 185 192 https://doi.org/10.1051/apido:19960401 10.1051/apido:19960401 Search in Google Scholar

Fontaine, C., Dajoz, I., Meriguet, J., Loreau, M. (2005). Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biology, 4(1), e1. https://doi.org/10.1371/journal.pbio.0040001 FontaineC. DajozI. MeriguetJ. LoreauM. 2005 Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities PLoS Biology 4 1 e1 https://doi.org/10.1371/journal.pbio.0040001 10.1371/journal.pbio.0040001 Search in Google Scholar

Forsgren, E., De Miranda, J. R., Isaksson, M., Wei, S., Fries, I. (2009). Deformed wing virus associated with Tropilaelaps mercedesae infesting European honey bees (Apis mellifera). Experimental and Applied Acarology, 47(2), 87–97. https://doi.org/10.1007/s10493-008-9204-4 ForsgrenE. De MirandaJ. R. IsakssonM. WeiS. FriesI. 2009 Deformed wing virus associated with Tropilaelaps mercedesae infesting European honey bees (Apis mellifera) Experimental and Applied Acarology 47 2 87 97 https://doi.org/10.1007/s10493-008-9204-4 10.1007/s10493-008-9204-4 Search in Google Scholar

Fries, I., Feng, F., da Silva, A., Slemenda, S. B., Pieniazek, N. J. (1996). Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). European Journal of Protistology, 32(3), 356–365. https://doi.org/10.1016/S0932-4739(96)80059-9 FriesI. FengF. da SilvaA. SlemendaS. B. PieniazekN. J. 1996 Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae) European Journal of Protistology 32 3 356 365 https://doi.org/10.1016/S0932-4739(96)80059-9 10.1016/S0932-4739(96)80059-9 Search in Google Scholar

Garrido, P. M., Antúnez, K., Martín, M., Porrini, M. P., Zunino, P., Eguaras, M. J. (2013). Immune-related gene expression in nurse honey bees (Apis mellifera) exposed to synthetic acaricides. Journal of Insect Physiology, 59(1), 113–119. https://doi.org/10.1016/j.jinsphys.2012.10.019 GarridoP. M. AntúnezK. MartínM. PorriniM. P. ZuninoP. EguarasM. J. 2013 Immune-related gene expression in nurse honey bees (Apis mellifera) exposed to synthetic acaricides Journal of Insect Physiology 59 1 113 119 https://doi.org/10.1016/j.jinsphys.2012.10.019 10.1016/j.jinsphys.2012.10.01923147024 Search in Google Scholar

Gauthier, L., Tentcheva, D., Tournaire, M., Dainat, B., Cousserans, F., Colin, M. E., Bergoin, M. (2007). Viral load estimation in asymptomatic honey bee colonies using the quantitative RT-PCR technique. Apidologie, 38(5), 426–435. https://doi.org/10.1051/apido:2007026 GauthierL. TentchevaD. TournaireM. DainatB. CousseransF. ColinM. E. BergoinM. 2007 Viral load estimation in asymptomatic honey bee colonies using the quantitative RT-PCR technique Apidologie 38 5 426 435 https://doi.org/10.1051/apido:2007026 10.1051/apido:2007026 Search in Google Scholar

Genersch, E., Von Der Ohe, W., Kaatz, H., Schroeder, A., Otten, C., Büchler, R., … Meixner, M. (2010). The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie, 41(3), 332–352. https://doi.org/10.1051/apido/2010014 GenerschE. Von Der OheW. KaatzH. SchroederA. OttenC. BüchlerR. MeixnerM. 2010 The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies Apidologie 41 3 332 352 https://doi.org/10.1051/apido/2010014 10.1051/apido/2010014 Search in Google Scholar

Gillespie, J. P., Kanost, M. R., Trenczek, T. (1997). Biological mediators of insect immunity. Annual Review of Entomology, 42, 611–643. https://doi.org/10.1146/annurev.ento.42.1.611 GillespieJ. P. KanostM. R. TrenczekT. 1997 Biological mediators of insect immunity Annual Review of Entomology 42 611 643 https://doi.org/10.1146/annurev.ento.42.1.611 10.1146/annurev.ento.42.1.611 Search in Google Scholar

Gilliam, M. (1997). Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiology Letters, 155(1), 1–10. https://doi.org/10.1111/j.1574-6968.1997.tb12678.x GilliamM. 1997 Identification and roles of non-pathogenic microflora associated with honey bees FEMS Microbiology Letters 155 1 1 10 https://doi.org/10.1111/j.1574-6968.1997.tb12678.x 10.1016/S0378-1097(97)00337-6 Search in Google Scholar

Gilliam, M., Taber III, S., Richardson, G. V. (1983). Hygienic behavior of honey bees in relation to chalkbrood disease. Apidologie, 14(1), 29–39. GilliamM. TaberS.III RichardsonG. V. 1983 Hygienic behavior of honey bees in relation to chalkbrood disease Apidologie 14 1 29 39 10.1051/apido:19830103 Search in Google Scholar

Gliński, Z., & Jarosz, J. (1992). Varroa jacobsoni as a carrier of bacterial infections to a recipient bee host. Apidologie, 23(1), 25–31. https://doi.org/10.1051/apido:19920103 GlińskiZ. JaroszJ. 1992 Varroa jacobsoni as a carrier of bacterial infections to a recipient bee host Apidologie 23 1 25 31 https://doi.org/10.1051/apido:19920103 10.1051/apido:19920103 Search in Google Scholar

Gliński, Z., & Jarosz, J. (1995). Mechanical and biochemical defences of honey bees. Bee World, 76(3), 110–118. https://doi.org/10.1080/0005772X.1995.11099257 GlińskiZ. JaroszJ. 1995 Mechanical and biochemical defences of honey bees Bee World 76 3 110 118 https://doi.org/10.1080/0005772X.1995.11099257 10.1080/0005772X.1995.11099257 Search in Google Scholar

Goulson, D., Nicholls, E., Botias, C., Rotheray, E. L. (2015). Bee declines driven by combined stress from parasites, pesticides and lack of flowers. Science, 347(6229). https://doi.org/10.1126/science.1255957 GoulsonD. NichollsE. BotiasC. RotherayE. L. 2015 Bee declines driven by combined stress from parasites, pesticides and lack of flowers Science 347 6229 https://doi.org/10.1126/science.1255957 10.1126/science.125595725721506 Search in Google Scholar

Gregorc, A., & Bowen, I. D. (1998). Histopathological and histochemical changes in honeybee larvae (Apis mellifera L.) after infection with Bacillus larvae, the causative agent of American foulbrood disease. Cell Biology International, 22(2), 137–144. https://doi.org/10.1006/cbir.1998.0232 GregorcA. BowenI. D. 1998 Histopathological and histochemical changes in honeybee larvae (Apis mellifera L.) after infection with Bacillus larvae, the causative agent of American foulbrood disease Cell Biology International 22 2 137 144 https://doi.org/10.1006/cbir.1998.0232 10.1006/cbir.1998.02329878101 Search in Google Scholar

Gregorc, A., Evans, J. D., Scharf, M., Ellis, J. D. (2012). Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor). Journal of Insect Physiology, 58(8),1042–1049. https://doi.org/10.1016/j.jinsphys.2012.03.015 GregorcA. EvansJ. D. ScharfM. EllisJ. D. 2012 Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor) Journal of Insect Physiology 58 8 1042 1049 https://doi.org/10.1016/j.jinsphys.2012.03.015 10.1016/j.jinsphys.2012.03.01522497859 Search in Google Scholar

Gross, M. (2007). Bee puzzles. Current Biology, 17(11), R389. https://doi.org/10.1016/j.cub.2007.05.027 GrossM. 2007 Bee puzzles Current Biology 17 11 R389 https://doi.org/10.1016/j.cub.2007.05.027 10.1016/j.cub.2007.05.02717600898 Search in Google Scholar

Guzman-Novoa, E., Emsen, B., Unger, P., Espinosa-Montaño, L. G., Petukhova, T. (2012). Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.). Journal of Invertebrate Pathology, 110(3), 314–320. https://doi.org/10.1016/j.jip.2012.03.020 Guzman-NovoaE. EmsenB. UngerP. Espinosa-MontañoL. G. PetukhovaT. 2012 Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.) Journal of Invertebrate Pathology 110 3 314 320 https://doi.org/10.1016/j.jip.2012.03.020 10.1016/j.jip.2012.03.02022465569 Search in Google Scholar

Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J. F., Aupinel, P., … Decourtye, A. (2012). A common pesticide decreases foraging success and survival in honey bees. Science, 336(6079), 348–350. https://doi.org/10.1126/science.1215039 HenryM. BeguinM. RequierF. RollinO. OdouxJ. F. AupinelP. DecourtyeA. 2012 A common pesticide decreases foraging success and survival in honey bees Science 336 6079 348 350 https://doi.org/10.1126/science.1215039 10.1126/science.121503922461498 Search in Google Scholar

HGSC (The Honeybee Genome Sequencing Consortium) (2006). Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443(7114), 931–949. https://doi.org/10.1038/nature05260 HGSC (The Honeybee Genome Sequencing Consortium) 2006 Insights into social insects from the genome of the honeybee Apis mellifera Nature 443 7114 931 949 https://doi.org/10.1038/nature05260 10.1038/nature05260204858617073008 Search in Google Scholar

Higes, M., García-Palencia, P., Martín-Hernández, R., Meana, A. (2007). Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). Journal of Invertebrate Pathology, 94(3), 211–217. https://doi.org/10.1016/j.jip.2006.11.001 HigesM. García-PalenciaP. Martín-HernándezR. MeanaA. 2007 Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia) Journal of Invertebrate Pathology 94 3 211 217 https://doi.org/10.1016/j.jip.2006.11.001 10.1016/j.jip.2006.11.00117217954 Search in Google Scholar

Huang, Z. (2012). Pollen nutrition affects honey bee stress resistance. Terrestrial Arthropod Reviews, 5(2), 175–189. https://doi.org/10.1163/187498312X639568 HuangZ. 2012 Pollen nutrition affects honey bee stress resistance Terrestrial Arthropod Reviews 5 2 175 189 https://doi.org/10.1163/187498312X639568 10.1163/187498312X639568 Search in Google Scholar

Ibrahim, A., Reuter, G. S., Spivak, M. (2007). Field trial of honey bee colonies bred for mechanisms of resistance against Varroa destructor. Apidologie, 38(1), 67–76. https://doi.org/10.1051/apido:2006065 IbrahimA. ReuterG. S. SpivakM. 2007 Field trial of honey bee colonies bred for mechanisms of resistance against Varroa destructor Apidologie 38 1 67 76 https://doi.org/10.1051/apido:2006065 10.1051/apido:2006065 Search in Google Scholar

James, R. R., & Xu, J. (2012). Mechanisms by which pesticides affect insect immunity. Journal of Invertebrate Pathology, 109(2), 175–182. https://doi.org/10.1016/j.jip.2011.12.005 JamesR. R. XuJ. 2012 Mechanisms by which pesticides affect insect immunity Journal of Invertebrate Pathology 109 2 175 182 https://doi.org/10.1016/j.jip.2011.12.005 10.1016/j.jip.2011.12.00522206912 Search in Google Scholar

Janashia, I., & Alaux, C. (2016). Specific immune stimulation by endogenous bacteria in honey bees (Hymenoptera: Apidae). Journal of Economic Entomology, 109(3), 1474–1477. https://doi.org/10.1093/jee/tow065 JanashiaI. AlauxC. 2016 Specific immune stimulation by endogenous bacteria in honey bees (Hymenoptera: Apidae) Journal of Economic Entomology 109 3 1474 1477 https://doi.org/10.1093/jee/tow065 10.1093/jee/tow06527063842 Search in Google Scholar

Jena, N. R. (2012). DNA damage by reactive species: Mechanisms, mutation and repair. Journal of Biosciences, 37(3), 503–517. https://doi.org/10.1007/s12038-012-9218-2 JenaN. R. 2012 DNA damage by reactive species: Mechanisms, mutation and repair Journal of Biosciences 37 3 503 517 https://doi.org/10.1007/s12038-012-9218-2 10.1007/s12038-012-9218-222750987 Search in Google Scholar

Jivan, A. (2013). The impact of pesticides on honey bees and hence on humans. Scientific Papers Animal Science and Biotechnologies, 46(2), 272–277. JivanA. 2013 The impact of pesticides on honey bees and hence on humans Scientific Papers Animal Science and Biotechnologies 46 2 272 277 Search in Google Scholar

Johnson, R. M., Dahlgren, L., Siegfried, B. D., Ellis, M. D. (2013). Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). PLoS One, 8(1), e54092. https://doi.org/10.1371/journal.pone.0054092 JohnsonR. M. DahlgrenL. SiegfriedB. D. EllisM. D. 2013 Acaricide, fungicide and drug interactions in honey bees (Apis mellifera) PLoS One 8 1 e54092 https://doi.org/10.1371/journal.pone.0054092 10.1371/journal.pone.0054092355850223382869 Search in Google Scholar

Jones, J. C. (1962). Current concepts concerning insect hemocytes. American Zoologist, 2(2), 209–246. JonesJ. C. 1962 Current concepts concerning insect hemocytes American Zoologist 2 2 209 246 10.1093/icb/2.2.209 Search in Google Scholar

Kaaya, G. P. (1993). Inducible humoral antibacterial immunity in insects. In: Pathak, J. P. N. (Eds.), Insect Immunity (pp. 69–89). Springer, Dordrecht. KaayaG. P. 1993 Inducible humoral antibacterial immunity in insects In: PathakJ. P. N. (Eds.), Insect Immunity 69 89 Springer Dordrecht 10.1007/978-94-011-1618-3_6 Search in Google Scholar

Khongphinitbunjong, K., de Guzman, L. I., Tarver, M. R., Rinderer, T. E., Chantawannakul, P. (2015). Interactions of Tropilaelaps mercedesae, honey bee viruses and immune response in Apis mellifera. Journal of Apicultural Research, 54(1), 40–47. https://doi.org/10.1080/00218839.2015.1041311 KhongphinitbunjongK. de GuzmanL. I. TarverM. R. RindererT. E. ChantawannakulP. 2015 Interactions of Tropilaelaps mercedesae, honey bee viruses and immune response in Apis mellifera Journal of Apicultural Research 54 1 40 47 https://doi.org/10.1080/00218839.2015.1041311 10.1080/00218839.2015.1041311 Search in Google Scholar

Klein, A. M., Vaissiere, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303–313. https://doi.org/10.1098/rspb.2006.3721 KleinA. M. VaissiereB. E. CaneJ. H. Steffan-DewenterI. CunninghamS. A. KremenC. TscharntkeT. 2007 Importance of pollinators in changing landscapes for world crops Proceedings of the Royal Society B: Biological Sciences 274 1608 303 313 https://doi.org/10.1098/rspb.2006.3721 10.1098/rspb.2006.3721170237717164193 Search in Google Scholar

Kronenberg, F., & Heller, H. C. (1982). Colonial thermoregulation in honey bees (Apis mellifera). Journal of Comparative Physiology A, 148(1), 65–76. https://doi.org/10.1007/BF00688889 KronenbergF. HellerH. C. 1982 Colonial thermoregulation in honey bees (Apis mellifera) Journal of Comparative Physiology A 148 1 65 76 https://doi.org/10.1007/BF00688889 10.1007/BF00688889 Search in Google Scholar

Kurze, C., Le Conte, Y., Dussaubat, C., Erler, S., Kryger, P., Lewkowski, O., … Moritz, R. F. (2015). Nosema tolerant honeybees (Apis mellifera) escape parasitic manipulation of apoptosis. PLoS One, 10(10), e0140174. https://doi.org/10.1371/journal.pone.0140174 KurzeC. Le ConteY. DussaubatC. ErlerS. KrygerP. LewkowskiO. MoritzR. F. 2015 Nosema tolerant honeybees (Apis mellifera) escape parasitic manipulation of apoptosis PLoS One 10 10 e0140174 https://doi.org/10.1371/journal.pone.0140174 10.1371/journal.pone.0140174459655426445372 Search in Google Scholar

Larsen, A., Reynaldi, F. J., Guzmán-Novoa, E. (2019). Fundaments of the honey bee (Apis mellifera) immune system. Review. Revista Mexicana de Ciencias Pecuarias, 10(3), 705–728. LarsenA. ReynaldiF. J. Guzmán-NovoaE. 2019 Fundaments of the honey bee (Apis mellifera) immune system. Review Revista Mexicana de Ciencias Pecuarias 10 3 705 728 10.22319/rmcp.v10i3.4785 Search in Google Scholar

Laughton, A. M., Boots, M., Siva-Jothy, M. T. (2011). The ontogeny of immunity in the honey bee, Apis mellifera L. following an immune challenge. Journal of Insect Physiology, 57(7), 1023–1032. https://doi.org/10.1016/j.jinsphys.2011.04.020 LaughtonA. M. BootsM. Siva-JothyM. T. 2011 The ontogeny of immunity in the honey bee, Apis mellifera L. following an immune challenge Journal of Insect Physiology 57 7 1023 1032 https://doi.org/10.1016/j.jinsphys.2011.04.020 10.1016/j.jinsphys.2011.04.02021570403 Search in Google Scholar

Le Conte, Y., & Navajas, M. (2008). Climate change: impact on honey bee populations and diseases. Revue Scientifique et Technique-Office International des Epizooties, 27(2), 499–510. Le ConteY. NavajasM. 2008 Climate change: impact on honey bee populations and diseases Revue Scientifique et Technique-Office International des Epizooties 27 2 499 510 10.20506/rst.27.2.1819 Search in Google Scholar

Li, G., Zhao, H., Liu, Z., Wang, H., Xu, B., Guo, X. (2018). The wisdom of honeybee defenses against environmental stresses. Frontiers in Microbiology, 9, 722. https://doi.org/10.3389/fmicb.2018.00722 LiG. ZhaoH. LiuZ. WangH. XuB. GuoX. 2018 The wisdom of honeybee defenses against environmental stresses Frontiers in Microbiology 9 722 https://doi.org/10.3389/fmicb.2018.00722 10.3389/fmicb.2018.00722593860429765357 Search in Google Scholar

Li, G., Zhao, H., Wang, H., Guo, X., Guo, X., Sun, Q., Xu, B. (2016). Characterization of a decapentapletic gene (AccDpp) from Apis cerana cerana and its possible involvement in development and response to oxidative stress. PLoS One, 11(2), e0149117. https://doi.org/10.1371/journal.pone.0149117 LiG. ZhaoH. WangH. GuoX. GuoX. SunQ. XuB. 2016 Characterization of a decapentapletic gene (AccDpp) from Apis cerana cerana and its possible involvement in development and response to oxidative stress PLoS One 11 2 e0149117 https://doi.org/10.1371/journal.pone.0149117 10.1371/journal.pone.0149117 Search in Google Scholar

Li, J., Heerman, M. C., Evans, J. D., Rose, R., Li, W., Rodríguez-García, C., … Hamilton, M. (2019). Pollen reverses decreased lifespan, altered nutritional metabolism and suppressed immunity in honey bees (Apis mellifera) treated with antibiotics. Journal of Experimental Biology, 222(7), 1–9. https://doi.org/10.1242/jeb.202077 LiJ. HeermanM. C. EvansJ. D. RoseR. LiW. Rodríguez-GarcíaC. HamiltonM. 2019 Pollen reverses decreased lifespan, altered nutritional metabolism and suppressed immunity in honey bees (Apis mellifera) treated with antibiotics Journal of Experimental Biology 222 7 1 9 https://doi.org/10.1242/jeb.202077 10.1242/jeb.202077 Search in Google Scholar

Liu, T. P. (1984). Ultrastructure of the midgut of the worker honey bee Apis mellifera heavily infected with Nosema apis. Journal of Invertebrate Pathology, 44(3), 282–291. https://doi.org/10.1016/0022-2011(84)90026-0 LiuT. P. 1984 Ultrastructure of the midgut of the worker honey bee Apis mellifera heavily infected with Nosema apis Journal of Invertebrate Pathology 44 3 282 291 https://doi.org/10.1016/0022-2011(84)90026-0 10.1016/0022-2011(84)90026-0 Search in Google Scholar

Liu, T. P. (1996). Varroa mites as carriers of honey-bee chalkbrood. American Bee Journal (USA). 136(9). LiuT. P. 1996 Varroa mites as carriers of honey-bee chalkbrood American Bee Journal (USA) 136 9 Search in Google Scholar

Lopez-Martinez, G., Elnitsky, M. A., Benoit, J. B., Lee Jr, R. E., Denlinger, D. L. (2008). High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochemistry and Molecular Biology, 38(8), 796–804. https://doi.org/10.1016/j.ibmb.2008.05.006 Lopez-MartinezG. ElnitskyM. A. BenoitJ. B. Lee JrR. E. DenlingerD. L. 2008 High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins Insect Biochemistry and Molecular Biology 38 8 796 804 https://doi.org/10.1016/j.ibmb.2008.05.006 10.1016/j.ibmb.2008.05.00618625403 Search in Google Scholar

Mallon, E. B., Brockmann, A., Schmid-Hempel, P. (2003). Immune response inhibits associative learning in insects. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1532), 2471–2473. https://doi.org/10.1098/rspb.2003.2456 MallonE. B. BrockmannA. Schmid-HempelP. 2003 Immune response inhibits associative learning in insects Proceedings of the Royal Society of London. Series B: Biological Sciences 270 1532 2471 2473 https://doi.org/10.1098/rspb.2003.2456 10.1098/rspb.2003.2456169153414667337 Search in Google Scholar

Mao, W., Schuler, M. A., Berenbaum, M. R. (2013). Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proceedings of the National Academy of Sciences, 110(22), 8842–8846. https://doi.org/10.1073/pnas.1303884110 MaoW. SchulerM. A. BerenbaumM. R. 2013 Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera Proceedings of the National Academy of Sciences 110 22 8842 8846 https://doi.org/10.1073/pnas.1303884110 10.1073/pnas.1303884110367037523630255 Search in Google Scholar

Martel, A. C., Zeggane, S., Aurières, C., Drajnudel, P., Faucon, J. P., Aubert, M. (2007). Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar® or Asuntol®50*. Apidologie, 38(6), 534–544. https://doi.org/10.1051/apido:2007038 MartelA. C. ZegganeS. AurièresC. DrajnudelP. FauconJ. P. AubertM. 2007 Acaricide residues in honey and wax after treatment of honey bee colonies with Apivar® or Asuntol®50* Apidologie 38 6 534 544 https://doi.org/10.1051/apido:2007038 10.1051/apido:2007038 Search in Google Scholar

Martín-Hernández, R., Botías, C., Barrios, L., Martínez-Salvador, A., Meana, A., Mayack, C., Higes, M. (2011). Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitology Research, 109(3), 605–612. https://doi.org/10.1007/s00436-011-2292-9 Martín-HernándezR. BotíasC. BarriosL. Martínez-SalvadorA. MeanaA. MayackC. HigesM. 2011 Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera) Parasitology Research 109 3 605 612 https://doi.org/10.1007/s00436-011-2292-9 10.1007/s00436-011-2292-921360094 Search in Google Scholar

May, E., Wilson, J., Isaacs, R. (2015). Minimizing pesticide risk to bees in fruit crops. Extension Bulletin Michigan State University-E3245, 1–16. MayE. WilsonJ. IsaacsR. 2015 Minimizing pesticide risk to bees in fruit crops Extension Bulletin Michigan State University-E3245 1 16 Search in Google Scholar

Mayack, C., & Naug, D. (2009). Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. Journal of Invertebrate Pathology, 100(3), 185–188. https://doi.org/10.1016/j.jip.2008.12.001 MayackC. NaugD. 2009 Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection Journal of Invertebrate Pathology 100 3 185 188 https://doi.org/10.1016/j.jip.2008.12.001 10.1016/j.jip.2008.12.00119135448 Search in Google Scholar

Mayack, C., & Naug, D. (2010). Parasitic infection leads to decline in hemolymph sugar levels in honeybee foragers. Journal of Insect Physiology, 56(11), 1572–1575. https://doi.org/10.1016/j.jinsphys.2010.05.016 MayackC. NaugD. 2010 Parasitic infection leads to decline in hemolymph sugar levels in honeybee foragers Journal of Insect Physiology 56 11 1572 1575 https://doi.org/10.1016/j.jinsphys.2010.05.016 10.1016/j.jinsphys.2010.05.01620685210 Search in Google Scholar

McKinstry, M., Chung, C., Truong, H., Johnston, B. A., Snow, J. W. (2017). The heat shock response and humoral immune response are mutually antagonistic in honey bees. Scientific Reports, 7(8850). https://doi.org/10.1038/s41598-017-09159-4 McKinstryM. ChungC. TruongH. JohnstonB. A. SnowJ. W. 2017 The heat shock response and humoral immune response are mutually antagonistic in honey bees Scientific Reports 7 8850 https://doi.org/10.1038/s41598-017-09159-4 10.1038/s41598-017-09159-4556273428821863 Search in Google Scholar

McMullan, J. B., & Brown, M. J. F. (2009). A qualitative model of mortality in honey bee (Apis mellifera) colonies infested with tracheal mites (Acarapis woodi). Experimental and Applied Acarology, 47, 225–234. https://doi.org/10.1007/s10493-008-9213-3 McMullanJ. B. BrownM. J. F. 2009 A qualitative model of mortality in honey bee (Apis mellifera) colonies infested with tracheal mites (Acarapis woodi) Experimental and Applied Acarology 47 225 234 https://doi.org/10.1007/s10493-008-9213-3 10.1007/s10493-008-9213-319009362 Search in Google Scholar

Medrzycki, P., Sgolastra, F., Bortolotti, L., Bogo, G., Tosi, S., Padovani, E., Porrini, C., Sabatini, A. G. (2010). Influence of brood rearing temperature on honey bee development and susceptibility to poisoning by pesticides. Journal of Apicultural Research, 49(1), 52–59. https://doi.org/10.3896/IBRA.1.49.1.07 MedrzyckiP. SgolastraF. BortolottiL. BogoG. TosiS. PadovaniE. PorriniC. SabatiniA. G. 2010 Influence of brood rearing temperature on honey bee development and susceptibility to poisoning by pesticides Journal of Apicultural Research 49 1 52 59 https://doi.org/10.3896/IBRA.1.49.1.07 10.3896/IBRA.1.49.1.07 Search in Google Scholar

Meikle, W. G., Adamczyk, J. J., Weiss, M., Gregorc, A., Johnson, D. R., Stewart, S. D., … Lorenz, G. M. (2016). Sublethal effects of imidacloprid on honey bee colony growth and activity at three sites in the US. PLoS One, 11(12), e0168603. https://doi.org/10.1371/journal.pone.0168603 MeikleW. G. AdamczykJ. J. WeissM. GregorcA. JohnsonD. R. StewartS. D. LorenzG. M. 2016 Sublethal effects of imidacloprid on honey bee colony growth and activity at three sites in the US PLoS One 11 12 e0168603 https://doi.org/10.1371/journal.pone.0168603 10.1371/journal.pone.0168603519341728030617 Search in Google Scholar

Melicher, D., Wilson, E. S., Bowsher, J. H., Peterson, S. S., Yocum, G. D., Rinehart, J. P. (2019). Long-distance transportation causes temperature stress in the honey bee, Apis mellifera (Hymenoptera: Apidae). Environmental Entomology, 48(3), 691–701. https://doi.org/10.1093/ee/nvz027 MelicherD. WilsonE. S. BowsherJ. H. PetersonS. S. YocumG. D. RinehartJ. P. 2019 Long-distance transportation causes temperature stress in the honey bee, Apis mellifera (Hymenoptera: Apidae) Environmental Entomology 48 3 691 701 https://doi.org/10.1093/ee/nvz027 10.1093/ee/nvz027655465130927358 Search in Google Scholar

Moret, Y., & Schmid-Hempel, P. (2000). Survival for immunity: The price of immune system activation for bumblebee workers. Science, 290(5494), 1166–1168. https://doi.org/10.1126/science.290.5494.1166 MoretY. Schmid-HempelP. 2000 Survival for immunity: The price of immune system activation for bumblebee workers Science 290 5494 1166 1168 https://doi.org/10.1126/science.290.5494.1166 10.1126/science.290.5494.116611073456 Search in Google Scholar

Morimoto, T., Kojima, Y., Toki, T., Komeda, Y., Yoshiyama, M., Kimura, K., Nirasawa, K., Kadowaki, T. (2011). The habitat disruption induces immune-suppression and oxidative stress in honey bees. Ecology and Evolution, 1(2), 201–217. https://doi.org/10.1002/ece3.21 MorimotoT. KojimaY. TokiT. KomedaY. YoshiyamaM. KimuraK. NirasawaK. KadowakiT. 2011 The habitat disruption induces immune-suppression and oxidative stress in honey bees Ecology and Evolution 1 2 201 217 https://doi.org/10.1002/ece3.21 10.1002/ece3.21328730022393496 Search in Google Scholar

Motta, E. V., Raymann, K., Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences, 115(41), 10305–10310. https://doi.org/10.1073/pnas.1803880115 MottaE. V. RaymannK. MoranN. A. 2018 Glyphosate perturbs the gut microbiota of honey bees Proceedings of the National Academy of Sciences 115 41 10305 10310 https://doi.org/10.1073/pnas.1803880115 10.1073/pnas.1803880115618712530249635 Search in Google Scholar

Naug, D., & Camazine, S. (2002). The role of colony organization on pathogen transmission in social insects. Journal of Theoretical Biology, 215(4), 427–439. https://doi.org/10.1006/jtbi.2001.2524 NaugD. CamazineS. 2002 The role of colony organization on pathogen transmission in social insects Journal of Theoretical Biology 215 4 427 439 https://doi.org/10.1006/jtbi.2001.2524 10.1006/jtbi.2001.252412069487 Search in Google Scholar

Nazzi, F., & Pennacchio, F. (2014). Disentangling multiple interactions in the hive ecosystem. Trends in Parasitology, 30(12), 556–561. https://doi.org/10.1016/j.pt.2014.09.006 NazziF. PennacchioF. 2014 Disentangling multiple interactions in the hive ecosystem Trends in Parasitology 30 12 556 561 https://doi.org/10.1016/j.pt.2014.09.006 10.1016/j.pt.2014.09.00625457396 Search in Google Scholar

Nazzi, F., Brown, S. P., Annoscia, D., Del Piccolo, F., Di Prisco, G., Varricchio, P., … Pennacchio, F. (2012). Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathogens, 8(6), e1002735. https://doi.org/10.1371/journal.ppat.1002735 NazziF. BrownS. P. AnnosciaD. Del PiccoloF. Di PriscoG. VarricchioP. PennacchioF. 2012 Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies PLoS Pathogens 8 6 e1002735 https://doi.org/10.1371/journal.ppat.1002735 10.1371/journal.ppat.1002735337529922719246 Search in Google Scholar

Negri, P., Maggi, M. D., Ramirez, L., De Feudis, L., Szwarski, N., Quintana, S., Eguaras, M. J., Lamattina, L. (2015). Abscisic acid enhances the immune response in Apis mellifera and contributes to the colony fitness. Apidologie, 46(4), 542–557. https://doi.org/10.1007/s13592-014-0345-7 NegriP. MaggiM. D. RamirezL. De FeudisL. SzwarskiN. QuintanaS. EguarasM. J. LamattinaL. 2015 Abscisic acid enhances the immune response in Apis mellifera and contributes to the colony fitness Apidologie 46 4 542 557 https://doi.org/10.1007/s13592-014-0345-7 10.1007/s13592-014-0345-7 Search in Google Scholar

Nelson, C. M., Ihle, K. E., Fondrk, M. K., Page, R. E. Jr., Amdam, G. V. (2007). The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biology, 5(3), e62. https://doi.org/10.1371/journal.pbio.0050062 NelsonC. M. IhleK. E. FondrkM. K. PageR. E. Jr. AmdamG. V. 2007 The gene vitellogenin has multiple coordinating effects on social organization PLoS Biology 5 3 e62 https://doi.org/10.1371/journal.pbio.0050062 10.1371/journal.pbio.0050062180811517341131 Search in Google Scholar

Ollerton, J., Winfree, R., Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321–326. https://doi.org/10.1111/j.1600-0706.2010.18644.x OllertonJ. WinfreeR. TarrantS. 2011 How many flowering plants are pollinated by animals? Oikos 120 3 321 326 https://doi.org/10.1111/j.1600-0706.2010.18644.x 10.1111/j.1600-0706.2010.18644.x Search in Google Scholar

Pamminger, T., Botías, C., Goulson, D., Hughes, W. O. H. (2018). A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees. Functional Ecology, 32(8), 1921–1930. https://doi.org/10.1111/1365-2435.13119 PammingerT. BotíasC. GoulsonD. HughesW. O. H. 2018 A mechanistic framework to explain the immunosuppressive effects of neurotoxic pesticides on bees Functional Ecology 32 8 1921 1930 https://doi.org/10.1111/1365-2435.13119 10.1111/1365-2435.13119 Search in Google Scholar

Perry, C. J., Søvik, E., Myerscough, M. R., Barron, A. B. (2015). Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proceedings of the National Academy of Sciences, 112(11), 3427–3432. https://doi.org/10.1073/pnas.1422089112 PerryC. J. SøvikE. MyerscoughM. R. BarronA. B. 2015 Rapid behavioral maturation accelerates failure of stressed honey bee colonies Proceedings of the National Academy of Sciences 112 11 3427 3432 https://doi.org/10.1073/pnas.1422089112 10.1073/pnas.1422089112437197125675508 Search in Google Scholar

Perveen, N., & Ahmad, M. (2017). Toxicity of some insecticides to the haemocytes of giant honeybee, Apis dorsata F. under laboratory conditions. Saudi Journal of Biological Sciences, 24(5), 1016–1022. https://doi.org/10.1016/j.sjbs.2016.12.011 PerveenN. AhmadM. 2017 Toxicity of some insecticides to the haemocytes of giant honeybee, Apis dorsata F. under laboratory conditions Saudi Journal of Biological Sciences 24 5 1016 1022 https://doi.org/10.1016/j.sjbs.2016.12.011 10.1016/j.sjbs.2016.12.011547829128663697 Search in Google Scholar

Pettis, J. S., Lichtenberg, E. M., Andree, M., Stitzinger, J., Rose, R., vanEngelsdorp, D. (2013). Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One, 8(7), e70182. https://doi.org/10.1371/journal.pone.0070182 PettisJ. S. LichtenbergE. M. AndreeM. StitzingerJ. RoseR. vanEngelsdorpD. 2013 Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae PLoS One 8 7 e70182 https://doi.org/10.1371/journal.pone.0070182 10.1371/journal.pone.0070182372215123894612 Search in Google Scholar

Pettis, J. S., vanEngelsdorp, D., Johnson, J., Dively, G. (2012). Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften, 99(2), 153–158. https://doi.org/10.1007/s00114-011-0881-1 PettisJ. S. vanEngelsdorpD. JohnsonJ. DivelyG. 2012 Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema Naturwissenschaften 99 2 153 158 https://doi.org/10.1007/s00114-011-0881-1 10.1007/s00114-011-0881-1326487122246149 Search in Google Scholar

Ponnappan, S., & Ponnappan, U. (2011). Aging and immune function: molecular mechanisms to interventions. Antioxidants & Redox Signaling, 14(8), 1551–1585. https://doi.org/10.1089/ars.2010.3228 PonnappanS. PonnappanU. 2011 Aging and immune function: molecular mechanisms to interventions Antioxidants & Redox Signaling 14 8 1551 1585 https://doi.org/10.1089/ars.2010.3228 10.1089/ars.2010.3228306119420812785 Search in Google Scholar

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25(6), 345–353. https://doi.org/10.1016/j.tree.2010.01.007 PottsS. G. BiesmeijerJ. C. KremenC. NeumannP. SchweigerO. KuninW. E. 2010 Global pollinator declines: trends, impacts and drivers Trends in Ecology & Evolution 25 6 345 353 https://doi.org/10.1016/j.tree.2010.01.007 10.1016/j.tree.2010.01.00720188434 Search in Google Scholar

Rabasa, C., & Dickson, S. L. (2016). Impact of stress on metabolism and energy balance. Current Opinion in Behavioral Sciences, 9, 71–77. https://doi.org/10.1016/j.cobeha.2016.01.011 RabasaC. DicksonS. L. 2016 Impact of stress on metabolism and energy balance Current Opinion in Behavioral Sciences 9 71 77 https://doi.org/10.1016/j.cobeha.2016.01.011 10.1016/j.cobeha.2016.01.011 Search in Google Scholar

Ramsey, S. D., Ochoa, R., Bauchan, G., Gulbronson, C., Mowery, J. D., Cohen, A., … vanEngelsdorp, D. (2019). Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences, 116(5), 1792–1801. https://doi.org/10.1073/pnas.1818371116 RamseyS. D. OchoaR. BauchanG. GulbronsonC. MoweryJ. D. CohenA. vanEngelsdorpD. 2019 Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph Proceedings of the National Academy of Sciences 116 5 1792 1801 https://doi.org/10.1073/pnas.1818371116 10.1073/pnas.1818371116635871330647116 Search in Google Scholar

Ratnieks, F. L. W., & Carreck, N. L. (2010). Clarity on honey bee collapse? Science, 327(5962), 152–153. https://doi.org/10.1126/science.1185563 RatnieksF. L. W. CarreckN. L. 2010 Clarity on honey bee collapse? Science 327 5962 152 153 https://doi.org/10.1126/science.1185563 10.1126/science.118556320056879 Search in Google Scholar

Richards, E. H., Jones, B., Bowman, A. (2011). Salivary secretions from the honeybee mite, Varroa destructor: effects on insect haemocytes and preliminary biochemical characterization. Parasitology, 138(5), 602–608. https://doi.org/10.1017/S0031182011000072 RichardsE. H. JonesB. BowmanA. 2011 Salivary secretions from the honeybee mite, Varroa destructor: effects on insect haemocytes and preliminary biochemical characterization Parasitology 138 5 602 608 https://doi.org/10.1017/S0031182011000072 10.1017/S003118201100007221281563 Search in Google Scholar

Richardson, R. T., Ballinger, M. N., Qian, F., Christman, J. W., Johnson, R. M. (2018). Morphological and functional characterization of honey bee, Apis mellifera, haemocyte cell communities. Apidologie, 49(3), 397–410. https://doi.org/10.1007/s13592-018-0566-2 RichardsonR. T. BallingerM. N. QianF. ChristmanJ. W. JohnsonR. M. 2018 Morphological and functional characterization of honey bee, Apis mellifera, haemocyte cell communities Apidologie 49 3 397 410 https://doi.org/10.1007/s13592-018-0566-2 10.1007/s13592-018-0566-2 Search in Google Scholar

Riessberger, U., & Crailsheim, K. (1997). Short-term effect of different weather conditions upon the behaviour of forager and nurse honey bees (Apis mellifera carnica Pollmann). Apidologie, 28(6), 411–426. https://doi.org/10.1051/apido:19970608 RiessbergerU. CrailsheimK. 1997 Short-term effect of different weather conditions upon the behaviour of forager and nurse honey bees (Apis mellifera carnica Pollmann) Apidologie 28 6 411 426 https://doi.org/10.1051/apido:19970608 10.1051/apido:19970608 Search in Google Scholar

Riessberger-Gallé, U., Hernández López, J., Schuehly, W., Crockett, S., Krainer, S., Crailsheim, K.(2015). Immune responses of honeybees and their fitness costs as compared to bumblebees. Apidologie, 46(2), 238–249. https://doi.org/10.1007/s13592-014-0318-x Riessberger-GalléU. Hernández LópezJ. SchuehlyW. CrockettS. KrainerS. CrailsheimK. 2015 Immune responses of honeybees and their fitness costs as compared to bumblebees Apidologie 46 2 238 249 https://doi.org/10.1007/s13592-014-0318-x 10.1007/s13592-014-0318-x457991126412907 Search in Google Scholar

Ryabov, E. V., Wood, G. R., Fannon, J. M., Moore, J. D., Bull, J. C., Chandler, D., … Evans, D. J. (2014). A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission. PLoS Pathogens, 10(6), e1004230. https://doi.org/10.1371/journal.ppat.1004230 RyabovE. V. WoodG. R. FannonJ. M. MooreJ. D. BullJ. C. ChandlerD. EvansD. J. 2014 A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission PLoS Pathogens 10 6 e1004230 https://doi.org/10.1371/journal.ppat.1004230 10.1371/journal.ppat.1004230407279524968198 Search in Google Scholar

Salem, M. H., Gad, A. A., Ramadan, H. M. (2006). Effect of Varroa destructor on different haemocyte count, total haemolymph protein on larvae, pupae and adults of Apis mellifera drones. Journal of the Egyptian Society of Toxicology, 35, 93–96. SalemM. H. GadA. A. RamadanH. M. 2006 Effect of Varroa destructor on different haemocyte count, total haemolymph protein on larvae, pupae and adults of Apis mellifera drones Journal of the Egyptian Society of Toxicology 35 93 96 Search in Google Scholar

Sammataro, D., Gerson, U., Needham, G. (2000). Parasitic mites of honey bees: life history, implications, and impact. Annual Review of Entomology, 45, 519–548. https://doi.org/10.1146/annurev.ento.45.1.519 SammataroD. GersonU. NeedhamG. 2000 Parasitic mites of honey bees: life history, implications, and impact Annual Review of Entomology 45 519 548 https://doi.org/10.1146/annurev.ento.45.1.519 10.1146/annurev.ento.45.1.51910761588 Search in Google Scholar

Sánchez-Bayo, F., Goulson, D., Pennacchio, F., Nazzi, F., Goka, K., Desneux, N. (2016). Are bee diseases linked to pesticides?-A brief review. Environment International, 89–90, 7–11. https://doi.org/10.1016/j.envint.2016.01.009 Sánchez-BayoF. GoulsonD. PennacchioF. NazziF. GokaK. DesneuxN. 2016 Are bee diseases linked to pesticides?-A brief review Environment International 89–90 7 11 https://doi.org/10.1016/j.envint.2016.01.009 10.1016/j.envint.2016.01.00926826357 Search in Google Scholar

Sanjerehei, M. M. (2014). The economic value of bees as pollinators of crops in Iran. Annual Research & Review in Biology, 4(19), 2957–2964. https://doi.org/10.9734/ARRB/2014/10200 SanjereheiM. M. 2014 The economic value of bees as pollinators of crops in Iran Annual Research & Review in Biology 4 19 2957 2964 https://doi.org/10.9734/ARRB/2014/10200 10.9734/ARRB/2014/10200 Search in Google Scholar

Schmid, M. R., Brockmann, A., Pirk, C. W., Stanley, D. W., Tautz, J. (2008). Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity. Journal of Insect Physiology, 54(2), 439–444. https://doi.org/10.1016/j.jinsphys.2007.11.002 SchmidM. R. BrockmannA. PirkC. W. StanleyD. W. TautzJ. 2008 Adult honeybees (Apis mellifera L.) abandon hemocytic, but not phenoloxidase-based immunity Journal of Insect Physiology 54 2 439 444 https://doi.org/10.1016/j.jinsphys.2007.11.002 10.1016/j.jinsphys.2007.11.00218164310 Search in Google Scholar

Schmid-Hempel, P. (2005). Evolutionary ecology of insect immune defenses. Annual Review of Entomology, 50, 529–551. https://doi.org/10.1146/annurev.ento.50.071803.130420 Schmid-HempelP. 2005 Evolutionary ecology of insect immune defenses Annual Review of Entomology 50 529 551 https://doi.org/10.1146/annurev.ento.50.071803.130420 10.1146/annurev.ento.50.071803.13042015471530 Search in Google Scholar

Seeley, T. D. (2014). Honeybee ecology: a study of adaptation in social life (Vol. 36). Princeton University Press. SeeleyT. D. 2014 Honeybee ecology: a study of adaptation in social life 36 Princeton University Press Search in Google Scholar

Sharma, R., & Martins, N. (2020). Telomeres, DNA damage and ageing: potential leads from Ayurvedic Rasayana (anti-ageing) drugs. Journal of Clinical Medicine, 9(8), 2544. https://doi.org/10.3390/jcm9082544 SharmaR. MartinsN. 2020 Telomeres, DNA damage and ageing: potential leads from Ayurvedic Rasayana (anti-ageing) drugs Journal of Clinical Medicine 9 8 2544 https://doi.org/10.3390/jcm9082544 10.3390/jcm9082544746505832781627 Search in Google Scholar

Sharma, R., & Prajapati, P. K. (2014). Diet and lifestyle guidelines for diabetes: Evidence based Ayurvedic perspectives. Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 21(4), 335–46. SharmaR. PrajapatiP. K. 2014 Diet and lifestyle guidelines for diabetes: Evidence based Ayurvedic perspectives Romanian Journal of Diabetes Nutrition and Metabolic Diseases 21 4 335 46 10.2478/rjdnmd-2014-0041 Search in Google Scholar

Sharma, R., Martins, N., Chaudhary, A., Garg, N., Sharma, V., Kuca, K., … Prajapati, P. K. (2020). Adjunct use of honey in diabetes mellitus: A consensus or conundrum? Trends in Food Science & Technology, 106, 254–274. https://doi.org/10.1016/j.tifs.2020.10.020 SharmaR. MartinsN. ChaudharyA. GargN. SharmaV. KucaK. PrajapatiP. K. 2020 Adjunct use of honey in diabetes mellitus: A consensus or conundrum? Trends in Food Science & Technology 106 254 274 https://doi.org/10.1016/j.tifs.2020.10.020 10.1016/j.tifs.2020.10.020 Search in Google Scholar

Sharma, R., Martins, N., Kuca, K., Chaudhary, A., Kabra, A., Rao, M.M., Prajapati, P.K. (2019). Chyawanprash: A Traditional Indian Bioactive Health Supplement. Biomolecules, 9(5), 161. https://doi.org/10.3390/biom9050161 SharmaR. MartinsN. KucaK. ChaudharyA. KabraA. RaoM.M. PrajapatiP.K. 2019 Chyawanprash: A Traditional Indian Bioactive Health Supplement Biomolecules 9 5 161 https://doi.org/10.3390/biom9050161 10.3390/biom9050161657156531035513 Search in Google Scholar

Shen, M., Yang, X., Cox-Foster, D., Cui, L. (2005). The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology, 342(1), 141–149. https://doi.org/10.1016/j.virol.2005.07.012 ShenM. YangX. Cox-FosterD. CuiL. 2005 The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees Virology 342 1 141 149 https://doi.org/10.1016/j.virol.2005.07.012 10.1016/j.virol.2005.07.01216109435 Search in Google Scholar

Sies, H. (2000). What is oxidative stress? In: Keaney, J. F. (Eds), Oxidative stress and vascular disease (pp. 1–8). Springer, Boston, MA. SiesH. 2000 What is oxidative stress? In: KeaneyJ. F. (Eds), Oxidative stress and vascular disease 1 8 Springer Boston, MA 10.1007/978-1-4615-4649-8_1 Search in Google Scholar

Sihag, R. C. (2014). Phenology of migration and decline in colony numbers and crop hosts of giant honeybee (Apis dorsata F.) in semiarid environment of Northwest India. Journal of Insects, 2014. Article ID 639467. http://dx.doi.org/10.1155/2014/639467 SihagR. C. 2014 Phenology of migration and decline in colony numbers and crop hosts of giant honeybee (Apis dorsata F.) in semiarid environment of Northwest India Journal of Insects 2014 Article ID 639467. http://dx.doi.org/10.1155/2014/639467 10.1155/2014/639467 Search in Google Scholar

Simone-Finstrom, M. (2017). Social immunity and the superorganism: Behavioral defenses protecting honey bee colonies from pathogens and parasites. Bee World, 94(1), 21–29. https://doi.org/10.1080/0005772X.2017.1307800 Simone-FinstromM. 2017 Social immunity and the superorganism: Behavioral defenses protecting honey bee colonies from pathogens and parasites Bee World 94 1 21 29 https://doi.org/10.1080/0005772X.2017.1307800 10.1080/0005772X.2017.1307800 Search in Google Scholar

Simone-Finstrom, M. D., & Spivak, M. (2012). Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS One, 7(3), e34601. https://doi.org/10.1371/journal.pone.0034601 Simone-FinstromM. D. SpivakM. 2012 Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS One 7 3 e34601 https://doi.org/10.1371/journal.pone.0034601 10.1371/journal.pone.0034601331553922479650 Search in Google Scholar

Simone-Finstrom, M., Li-Byarlay, H., Huang, M. H., Strand, M. K., Rueppell, O., Tarpy, D. R. (2016). Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees. Scientific Reports, 6. https://doi.org/10.1038/srep32023 Simone-FinstromM. Li-ByarlayH. HuangM. H. StrandM. K. RueppellO. TarpyD. R. 2016 Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees Scientific Reports 6 https://doi.org/10.1038/srep32023 10.1038/srep32023499552127554200 Search in Google Scholar

Siva-Jothy, M. T., & Thompson, J. J. W. (2002). Shortterm nutrient deprivation affects immune function. Physiological Entomology, 27(3), 206–212. https://doi.org/10.1046/j.1365-3032.2002.00286.x Siva-JothyM. T. ThompsonJ. J. W. 2002 Shortterm nutrient deprivation affects immune function Physiological Entomology 27 3 206 212 https://doi.org/10.1046/j.1365-3032.2002.00286.x 10.1046/j.1365-3032.2002.00286.x Search in Google Scholar

Southwick, E. E., & Heldmaier, G. (1987). Temperature control in honey bee colonies. Bioscience, 37(6), 395–399. SouthwickE. E. HeldmaierG. 1987 Temperature control in honey bee colonies Bioscience 37 6 395 399 10.2307/1310562 Search in Google Scholar

Spivak, M., & Reuter, G. S. (2001). Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie, 32(6), 555–565. https://doi.org/10.1051/apido:2001103 SpivakM. ReuterG. S. 2001 Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior Apidologie 32 6 555 565 https://doi.org/10.1051/apido:2001103 10.1051/apido:2001103 Search in Google Scholar

Stanimirović, Z., Glavinić, U., Ristanić, M., Aleksić, N., Jovanović, N., Vejnović, B., Stevanović, J. (2019). Looking for the causes of and solutions to the issue of honey bee colony losses. Acta Veterinaria, 69(1), 1–31. https://doi.org/10.2478/acve-2019-0001 StanimirovićZ. GlavinićU. RistanićM. AleksićN. JovanovićN. VejnovićB. StevanovićJ. 2019 Looking for the causes of and solutions to the issue of honey bee colony losses Acta Veterinaria 69 1 1 31 https://doi.org/10.2478/acve-2019-0001 10.2478/acve-2019-0001 Search in Google Scholar

Starks, P. T., Blackie, C. A., Seeley, T. D. (2000). Fever in honeybee colonies. Naturwissenschaften, 87(5), 229–231. StarksP. T. BlackieC. A. SeeleyT. D. 2000 Fever in honeybee colonies Naturwissenschaften 87 5 229 231 10.1007/s00114005070910883439 Search in Google Scholar

Steinmann, N., Corona, M., Neumann, P., Dainat, B. (2015). Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees. PLoS One, 10(6), e0129956. https://doi.org/10.1371/journal.pone.0129956 SteinmannN. CoronaM. NeumannP. DainatB. 2015 Overwintering is associated with reduced expression of immune genes and higher susceptibility to virus infection in honey bees PLoS One 10 6 e0129956 https://doi.org/10.1371/journal.pone.0129956 10.1371/journal.pone.0129956448672826121358 Search in Google Scholar

Strand, M. R. (2008). The insect cellular immune response. Insect Science, 15(1), 1–14. https://doi.org/10.1111/j.1744-7917.2008.00183.x StrandM. R. 2008 The insect cellular immune response Insect Science 15 1 1 14 https://doi.org/10.1111/j.1744-7917.2008.00183.x 10.1111/j.1744-7917.2008.00183.x Search in Google Scholar

Strauss, U., Pirk, C. W., Crewe, R. M., Human, H., Dietemann, V. (2015). Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa. Experimental and Applied Acarology, 65(1), 89–106. https://doi.org/10.1007/s10493-014-9842-7 StraussU. PirkC. W. CreweR. M. HumanH. DietemannV. 2015 Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa Experimental and Applied Acarology 65 1 89 106 https://doi.org/10.1007/s10493-014-9842-7 10.1007/s10493-014-9842-7 Search in Google Scholar

Szymaś, B., & Jędruszuk, A. (2003). The influence of different diets on haemocytes of adult worker honey bees, Apis mellifera. Apidologie, 34(2), 97–102. https://doi.org/10.1051/apido:2003012 SzymaśB. JędruszukA. 2003 The influence of different diets on haemocytes of adult worker honey bees, Apis mellifera Apidologie 34 2 97 102 https://doi.org/10.1051/apido:2003012 10.1051/apido:2003012 Search in Google Scholar

Trenczek, T., & Faye, I. (1988). Synthesis of immune proteins in primary cultures of fat body from Hyalophora cecropia. Insect Biochemistry, 18(3), 299–312. https://doi.org/10.1016/0020-1790(88)90095-9 TrenczekT. FayeI. 1988 Synthesis of immune proteins in primary cultures of fat body from Hyalophora cecropia Insect Biochemistry 18 3 299 312 https://doi.org/10.1016/0020-1790(88)90095-9 10.1016/0020-1790(88)90095-9 Search in Google Scholar

van der Zee, R., Pisa, L., Andonov, S., Brodschneider, R., Charriere, J. D., Chlebo, R., … Wilkins, S. (2012). Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10. Journal of Apicultural Research, 51(1), 100–114. https://doi.org/10.3896/IBRA.1.51.1.12 van der ZeeR. PisaL. AndonovS. BrodschneiderR. CharriereJ. D. ChleboR. WilkinsS. 2012 Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008–9 and 2009–10 Journal of Apicultural Research 51 1 100 114 https://doi.org/10.3896/IBRA.1.51.1.12 10.3896/IBRA.1.51.1.12 Search in Google Scholar

van Dooremalen, C., Gerritsen, L., Cornelissen, B., van der Steen, J. J. M., van Langevelde, F. Blacquiere, T. (2012). Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation. PLoS One, 7(4), e36285. https://doi.org/10.1371/journal.pone.0036285 van DooremalenC. GerritsenL. CornelissenB. van der SteenJ. J. M. van LangeveldeF. BlacquiereT. 2012 Winter survival of individual honey bees and honey bee colonies depends on level of Varroa destructor infestation PLoS One 7 4 e36285 https://doi.org/10.1371/journal.pone.0036285 10.1371/journal.pone.0036285 Search in Google Scholar

van Dooremalen, C., Stam, E., Gerritsen, L., Cornelissen, B., van der Steen, J., van Langevelde, F., Blacquière, T. (2013). Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees. Journal of Insect Physiology, 59(4), 487–493. https://doi.org/10.1016/j.jinsphys.2013.02.006 van DooremalenC. StamE. GerritsenL. CornelissenB. van der SteenJ. van LangeveldeF. BlacquièreT. 2013 Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees Journal of Insect Physiology 59 4 487 493 https://doi.org/10.1016/j.jinsphys.2013.02.006 10.1016/j.jinsphys.2013.02.006 Search in Google Scholar

Vandame, R., & Belzunces, L. P. (1998). Joint actions of deltamethrin and azole fungicides on honey bee thermoregulation. Neuroscience Letters, 251(1), 57–60. https://doi.org/10.1016/S0304-3940(98)00494-7 VandameR. BelzuncesL. P. 1998 Joint actions of deltamethrin and azole fungicides on honey bee thermoregulation Neuroscience Letters 251 1 57 60 https://doi.org/10.1016/S0304-3940(98)00494-7 10.1016/S0304-3940(98)00494-7 Search in Google Scholar

vanEngelsdorp, D., & Meixner, M. D. (2010). A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 103, S80–S95. https://doi.org/10.1016/j.jip.2009.06.011 vanEngelsdorpD. MeixnerM. D. 2010 A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them Journal of Invertebrate Pathology 103 S80 S95 https://doi.org/10.1016/j.jip.2009.06.011 10.1016/j.jip.2009.06.01119909973 Search in Google Scholar

Weidner, E., Findley, A. M., Dolgikh, V., Sokolova, J. (1999). Microsporidian biochemistry and physiology. In: Wittner, M., & Weiss, L. (Ed), The microsporidia and microsporidiosis (pp. 172–195). American Society of Microbiology. http://dx.doi.org/10.1128/9781555818227.ch5 WeidnerE. FindleyA. M. DolgikhV. SokolovaJ. 1999 Microsporidian biochemistry and physiology In: WittnerM. WeissL. (Ed), The microsporidia and microsporidiosis 172 195 American Society of Microbiology http://dx.doi.org/10.1128/9781555818227.ch5 10.1128/9781555818227.ch5 Search in Google Scholar

White Jr, J. W., Subers, M. H., Schepartz, A. I. (1963). The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochimica et Biophysica Acta (BBA)-Specialized Section on Enzymological Subjects, 73(1), 57–70. WhiteJ. W.Jr SubersM. H. SchepartzA. I. 1963 The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system Biochimica et Biophysica Acta (BBA)-Specialized Section on Enzymological Subjects 73 1 57 70 10.1016/0926-6569(63)90108-1 Search in Google Scholar

Wilson-Rich, N., Dres, S. T., Starks, P. T. (2008). The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). Journal of Insect Physiology, 54(10–11), 1392–1399. https://doi.org/10.1016/j.jinsphys.2008.07.016 Wilson-RichN. DresS. T. StarksP. T. 2008 The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera) Journal of Insect Physiology 54 10–11 1392 1399 https://doi.org/10.1016/j.jinsphys.2008.07.016 10.1016/j.jinsphys.2008.07.01618761014 Search in Google Scholar

Wilson-Rich, N., Spivak, M., Fefferman, N. H., Starks, P. T. (2009). Genetic, individual, and group facilitation of disease resistance in insect societies. Annual Review of Entomology, 54, 405–423. https://doi.org/10.1146/annurev.ento.53.103106.093301 Wilson-RichN. SpivakM. FeffermanN. H. StarksP. T. 2009 Genetic, individual, and group facilitation of disease resistance in insect societies Annual Review of Entomology 54 405 423 https://doi.org/10.1146/annurev.ento.53.103106.093301 10.1146/annurev.ento.53.103106.09330118793100 Search in Google Scholar

Yan, H., Jia, H., Wang, X., Gao, H., Guo, X., Xu, B. (2013). Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene (AccGSTD) in response to thermal stress. Naturwissenschaften, 100(2), 153–163. https://doi.org/10.1007/s00114-012-1006-1 YanH. JiaH. WangX. GaoH. GuoX. XuB. 2013 Identification and characterization of an Apis cerana cerana Delta class glutathione S-transferase gene (AccGSTD) in response to thermal stress Naturwissenschaften 100 2 153 163 https://doi.org/10.1007/s00114-012-1006-1 10.1007/s00114-012-1006-123275971 Search in Google Scholar

Yoshida, Y. (1988). Cytochrome P450 of fungi: primary target for azole antifungal agents. In: McGinnis, M. R. (Eds), Current Topics in Medical Mycology (pp. 388–418). Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3730-3_11 YoshidaY. 1988 Cytochrome P450 of fungi: primary target for azole antifungal agents In: McGinnisM. R. (Eds), Current Topics in Medical Mycology 388 418 Springer New York, NY https://doi.org/10.1007/978-1-4612-3730-3_11 10.1007/978-1-4612-3730-3_113288361 Search in Google Scholar

Zakaria, M. E. (2007). The cellular immunity responses in the haemolymph of honey bee workers infected by American foulbrood disease (AFB). Journal of Applied Sciences Research, 3(1), 56–63. ZakariaM. E. 2007 The cellular immunity responses in the haemolymph of honey bee workers infected by American foulbrood disease (AFB) Journal of Applied Sciences Research 3 1 56 63 Search in Google Scholar

Zhu, M., Zhang, W., Liu, F., Chen, X., Li, H., Xu, B. (2016). Characterization of an Apis cerana cerana cytochrome P450 gene (AccCYP336A1) and its roles in oxidative stresses responses. Gene, 584(2), 120–128. https://doi.org/10.1016/j.gene.2016.02.016 ZhuM. ZhangW. LiuF. ChenX. LiH. XuB. 2016 Characterization of an Apis cerana cerana cytochrome P450 gene (AccCYP336A1) and its roles in oxidative stresses responses Gene 584 2 120 128 https://doi.org/10.1016/j.gene.2016.02.016 10.1016/j.gene.2016.02.01626877110 Search in Google Scholar

eISSN:
2299-4831
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, Zoology, other