Otwarty dostęp

A Novel Method for Human Fall Detection Using Federated Learning and Interval-Valued Fuzzy Inference Systems

, , , ,  oraz   
08 gru 2024

Zacytuj
Pobierz okładkę

UR Fall Detection Dataset. http://fenix.ur.edu.pl/mkepski/ds/uf.html, 2016. Search in Google Scholar

G. Beliakov, H. Bustince, and T. Calvo. A practical guide to averaging functions, volume 329 of Studies in Fuzziness and Soft Computing. Springer, 2016. Search in Google Scholar

A. Bourke and G. Lyons. A threshold-based fall-detection algorithm using a biaxial gyroscope sensor. Medical Engineering and Physics, 30(1):84–90, 2008. Search in Google Scholar

A. Bourke, P. van de Ven, M. Gamble, R. O’Connor, K. Murphy, E. Bogan, E.and Mc- Quade, P. Finucane, G. Olaighin, and J. Nelson. Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities. Journal of Biomechanics, 43(15):3051–7, 2010. Search in Google Scholar

H. Bustince, J. Fernandez, A. Kolesárová, and R. Mesiar. Generation of linear orders for intervals by means of aggregation functions. Fuzzy Sets and Systems, 220:69–77, 2013. Theme: Aggregation functions. Search in Google Scholar

H. Bustince, M. Galar, B. Bedregal, A. Kolesárová, and R. Mesiar. A new approach to intervalvalued choquet integrals and the problem of ordering in interval-valued fuzzy sets applications. IEEE Transactions on Fuzzy Systems, 21(6):1150–1162, 2013. Search in Google Scholar

I. Couso and D. Dubois. Statistical reasoning with set-valued information: Ontic vs. epistemic views. International Journal of Approximate Reasoning, 55(7):1502–1518, 2014. Special issue: Harnessing the information contained in low-quality data sources. Search in Google Scholar

K. Dyczkowski, P. Grochowalski, D. Kosior, D. Gil, W. Kozioł, and B. P˛ekala. IFIS (Interval-Valued Fuzzy Inference System). https://github.com/PGrochowalski/ifis, 2024. Search in Google Scholar

K. Dyczkowski, P. Grochowalski, D. Kosior, D. Gil, W. Kozioł, B. P˛ekala, U. Kaymak, C. Fuchs, and M. S. Nobile. Python library for interval-valued fuzzy inference. SoftwareX, 26:101730, 2024. Search in Google Scholar

K. Dyczkowski, B. P˛ekala, J. Szkoła, and A. Wilbik. Federated learning with uncertainty on the example of a medical data. In 2022 IEEE International Conference on Fuzzy Systems (FUZZIEEE), pages 1–8. IEEE, 2022. Search in Google Scholar

K. Dyczkowski, A. Wójtowicz, P. ˙ Zywica, A. Stachowiak, R. Moszy´nski, and S. Szubert. An Intelligent System for Computer-Aided Ovarian Tumor Diagnosis. In Intelligent Systems’2014, pages 335–343, Cham, 2015. Springer International Publishing. Search in Google Scholar

M. Gorzałczany. A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets and Systems, 21(1):1–17, 1987. Search in Google Scholar

P. Kairouz, B. McMahan, and et al. Advances and open problems in federated learning. Foundations and Trends ® in Machine Learning, 14:1–210, 2021. Search in Google Scholar

M. Kepski. Fall Detection and Selected Action Recognition Using Image Sequences. Ph.D. Thesis, AGH University of Science and Technology, Kraków, Poland, 2016. Search in Google Scholar

M. Komorníková and R. Mesiar. Aggregation functions on bounded partially ordered sets and their classification. Fuzzy Sets and Systems, 175(1):48–56, 2011. Theme: Aggregation Functions, Generalised Measure Theory. Search in Google Scholar

J. Konečný, H. McMahan, D. Ramage, and P. Richtárik. Federated optimization: Distributed machine learning for on-device intelligence. ArXiv, 1610.02527, 2016. Search in Google Scholar

J. Konečný, H. McMahan, F. Yu, P. Richtárik, A. Suresh, and D. Bacon. Federated learning: Strategies for improving communication efficiency. ArXiv, 1610.05492, 2017. Search in Google Scholar

B. Kwolek and M. Kepski. Human fall detection on embedded platform using depth maps and wireless accelerometer. Computer methods and programs in biomedicine, 117(3):489–501, 2014. Search in Google Scholar

B. Kwolek and M. Kepski. Fuzzy inference-based fall detection using kinect and body-worn accelerometer. Applied Soft Computing, 40:305–318, 2016. Search in Google Scholar

I. Laktionov, G. Diachenko, D. Rutkowska, and M. Kisiel-Dorohinicki. An explainable ai approach to agrotechnical monitoring and crop diseases prediction in dnipro region of ukraine. Journal of Artificial Intelligence and Soft Computing Research, 13(4):247–272, 2023. Search in Google Scholar

I. Laktionov, O. Vovna, and M. Kabanets. Information technology for comprehensive monitoring and control of the microclimate in industrial greenhouses based on fuzzy logic. Journal of Artificial Intelligence and Soft Computing Research, 13(1):19–35, 2023. Search in Google Scholar

T. Li, A. Sahu, A. Talwalkar, and V. Smith. Federated learning: Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020. Search in Google Scholar

H. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Arcas. Communication-efficient learning of deep networks from decentralized data. In AISTATS 2017, 2017. Search in Google Scholar

S. Md Salleh, a. h. mohd yusoff, K. ngadimon, and C. Z. Koh. Neural network algorithm-based fall detection modelling. International Journal of Integrated Engineering, 12(3):138–150, Feb. 2020. Search in Google Scholar

R. Moore. Interval analysis. Prentice Hall, 1966. Search in Google Scholar

R. Moore. Methods and applications of interval analysis. SIAM, 1979. Search in Google Scholar

T. Mroczek, D. Gil, and B. Pękala. A hybrid fuzzy-rough approach to handling missing data in a fall detection system. Wojciechowski A.(Ed.), Lipiński P.(Ed.)., Progress in Polish Artificial Intelligence Research 4, Seria: Monografie Politechniki Łódzkiej Nr. 2437, Wydawnictwo Politechniki Łódzkiej, Łódź 2023, ISBN 978-83-66741-92-8, doi: 10.34658/9788366741928., 2023. Search in Google Scholar

Y. Nizam, M. N. H. Mohd, and M. M. A. Jamil. A study on human fall detection systems: Daily activity classification and sensing techniques. International Journal of Integrated Engineering, 8(1), 2016. Search in Google Scholar

B. Pe¸kala, T. Mroczek, D. Gil, and M. Kepski. Application of fuzzy and rough logic to posture recognition in fall detection system. Sensors, 22(4):1602, 2022. Search in Google Scholar

B. Pękala. Uncertainty Data in Interval-Valued Fuzzy Set Theory: Properties, Algorithms and Applications, volume 367 of Studies in Fuzziness and Soft Computing. Springer, 2019. Search in Google Scholar

A. Piegat and M. Landowski. Multidimensional approach to interval uncertainty calculations. In K. Atanassov and et al., editors, New Trends in Fuzzy Sets, Intuitionistic: Fuzzy Sets, Generalized Nets and Related Topics, Volume II: Applications, page 137–151, Warsaw, 2013. IBS PAN - SRI PAS. Search in Google Scholar

B. Pękala, A. Wilbik, J. Szkoła, and K. Dyczkowski. Federated learning with uncertainty for unbalanced data using the Choquet integral. IEEE International Conference on Fuzzy Systems, FUZZ-IEEE’2024, pages 1–8, 2024. Search in Google Scholar

R. Sambuc. Fonctions ϕ-floues: Application á l’aide au diagnostic en pathologie thyroidienne. PhD thesis, Faculté de Médecine de Marseille, 1975. (in French). Search in Google Scholar

E. Stone and M. Skubic. Evaluation of an inexpensive depth camera for passive inhome fall risk assessment. Journal of Ambient Intelligence and Smart Environments, 3(4):349–361, 2011. Search in Google Scholar

E. Stone and M. Skubic. Unobtrusive, continuous, in-home gait measurement using the microsoft kinect. EEE Transactions on Biomedical Engineering, 60(10):2925–2932, 2013. Search in Google Scholar

E. Szmidt, J. Kacprzyk, P. Bujnowski, J. T. Star-czewski, and A. Siwocha. Ranking of alternatives described by atanassov’s intuitionistic fuzzy sets – reconciling some misunderstandings. Journal of Artificial Intelligence and Soft Computing Research, 14(3):237–250, 2024. Search in Google Scholar

T. Theodoridis, V. Solachidis, N. Vretos, and P. Daras. Human fall detection from acceleration measurements using a recurrent neural network. In Precision Medicine Powered by pHealth and Connected Health: ICBHI 2017, Thessaloniki, Greece, 18-21 November 2017, pages 145–149. Springer, 2018. Search in Google Scholar

I. B. Türksen. Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems, 20(2):191–210, 1986. Search in Google Scholar

A. Wilbik and P. Grefen. Towards a federated fuzzy learning system. pages 1–6. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2021. Search in Google Scholar

A. Wilbik, B. Pękala, K. Dyczkowski, and J. Szkoła. A comparison of client weighting schemes in federated learning. In International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, Springer, pages 116–128, 2022. Search in Google Scholar

A. Wilbik, B. Pękala, J. Szkoła, and K. Dyczkowski. The Sugeno integral used for federated learning with uncertainty for unbalanced data. IEEE International Conference on Fuzzy Systems, FUZZ-IEEE’2023, pages 1–6, 2003. Search in Google Scholar

Q. Yang, Y. Liu, T. Chen, and Y. Tong. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol., 10(2), 2019. Search in Google Scholar

S. Yoo and D. Oh. An artificial neural network–based fall detection. International Journal of Engineering Business Management, 10:1847979018787905, 2018. Search in Google Scholar

L. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965. Search in Google Scholar

L. Zadeh. The concept of a linguistic variable and its application to approximate reasoning–i. Information Sciences, 8(3):199–249, 1975. Search in Google Scholar

H. Zapata, H. Bustince, S. Montes, B. Bedregal, G. Dimuro, Z. Takáč, M. Baczyński, and J. Fernandez. Interval-valued implications and interval-valued strong equality index with admissible orders. International Journal of Approximate Reasoning, 88:91–109, 2017. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Informatyka, Sztuczna inteligencja, Bazy danych i eksploracja danych