Otwarty dostęp

Information Technology for Comprehensive Monitoring and Control of the Microclimate in Industrial Greenhouses Based on Fuzzy Logic


Zacytuj

[1] FAOSTAT: Food and agriculture organization of the united nations. Available at: http://www.fao.org/faostat/en/#home [Accessed 25 May 2022]. Search in Google Scholar

[2] W. Baudoin, A. Nersisyan, A. Shamilov, A. Hodder, D. Gutierrez, Good Agricultural Practices for greenhouse vegetable production in the South East European countries, Food and Agriculture Organization of the United Nations, Rome 2017. URL: https://www.fao.org/documents/card/ru/c/22b737e1-488e-4993-86c9-13fd3fed122f/ Search in Google Scholar

[3] American Society of Agricultural and Biological Engineers: ANSI/ASAE EP406.4 JAN2003 (R2008) Heating, Ventilating and Cooling Greenhouses. Available at: http://materialstandard.com/wp-content/uploads/2019/07/ANSI-ASABE-EP406-4-JAN2003-R2008.pdf [Accessed 15 May 2022]. Search in Google Scholar

[4] A. Kamilaris, A Review on the Application of Natural Computing in Environmental Informatics, In: 32nd EnviroInfo, Munchen, Germany, 2018, pp. 1–11. https://doi.org/10.48550/arXiv.1808.00260. Search in Google Scholar

[5] M. Erazo-Rodas, M. Sandoval-Moreno, S. Munoz-Romero, M. Huerta, D. Rivas-Lalaleo, C. Naranjo, J. Rojo-Alvarez, Multiparametric Monitoring in Equatorian Tomato Greenhouses (I): Wireless Sensor Network Benchmarking, Sensors, 18 (8), 2018, pp. 1–22. https://doi.org/10.3390/s18082555.10.3390/s18082555611137630081559 Search in Google Scholar

[6] J. Miliauskaite, D. Kalibatiene, Complexity in Data-Driven Fuzzy Inference Systems: Survey, Classification and Perspective, Baltic J. Modern Computing, 8 (4), 2020, pp. 572–596. https://doi.org/10.22364/bjmc.2020.8.4.08.10.22364/bjmc.2020.8.4.08 Search in Google Scholar

[7] I. Laktionov, O. Vovna, A. Zori, Copncept of low cost computerized measuring system for micro-climate parameters of greenhouses, Bulg. Journal of Agric. Sc., 23 (4), 2017, pp. 668–673. URL: https://agrojournal.org/23/04-24.pdf. Search in Google Scholar

[8] O. Vovna, I. Laktionov, S. Sukach, M. Kabanets, E. Cherevko. Method of adaptive control of effective energy lighting of greenhouses in the visible optical range. Bulg. Journal of Agric. Sc., 24 (2), 2018, pp. 335–340. URL: https://agrojournal.org/24/02-23.pdf. Search in Google Scholar

[9] I.S. Laktionov, O.V. Vovna, Y.O. Bashkov, A.A. Zori, A.A., V.A. Lebediev, Improved Computer-Oriented Method for Processing of Measurement Information on Greenhouse Microclimate, Int. J. Bioautomation, 23 (1), 2019, pp. 71–86. https://doi.org/10.7546/ijba.2019.23.1.71-86.10.7546/ijba.2019.23.1.71-86 Search in Google Scholar

[10] I.S. Laktionov, O.V. Vovna, M.M. Kabanets, H.O. Sheina, I.A. Getman, Information model of the computer-integrated technology for wireless monitoring of the state of microclimate of industrial agricultural greenhouses, Instrumentation Mesure Metrologie, 20 (6), 2021, pp. 289 – 300. https://doi.org/10.18280/i2m.200601.10.18280/i2m.200601 Search in Google Scholar

[11] J. Arshad, S. Saleem, M. Sana Ullah Badar, S. Khalid, Z. Mumtaz, S. Ullah, Z. Illyas, H. Ahmad Madni, An intelligent monitoring and controlling of greenhouse: Deployment of wireless sensor networks and internet-of-things, Preprints MDPI, 2019, pp. 1–13. https://doi.org/10.20944/preprints201811.0215.v1.10.20944/preprints201811.0215.v1 Search in Google Scholar

[12] A. Touhami, B. Khelifa, L. Garcia, L. Parra, J. Lloret, B. Fateh, Sensor Network Proposal for Greenhouse Automation placed at the South of Algeria, Network Protocols and Algorithms, 10 (4), 2018, pp. 53–69. https://doi.org/10.20944/10.5296/npa.v10i4.14155. Search in Google Scholar

[13] S. Salvi, S.A. Pramod Jain, H.A. Sanjay, T.K. Harshita, M. Farhana, J. Naveen, M.V. Suhas, Cloud Based Data Analysis and Monitoring of Smart Multi-level Irrigation System Using IoT, In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India, 2017, pp. 752–757. https://doi.org/10.1109/I-SMAC.2017.8058279.10.1109/I-SMAC.2017.8058279 Search in Google Scholar

[14] F. Ouyang, H. Cheng, Y. Lan, Y. Zhang, X. Yin, J. Hu, X. Peng, G. Wang, S. Chen, Automatic delivery and recovery system of Wireless Sensor Networks (WSN) nodes based on UAV for agricultural applications, Computers and Electronics in Agriculture, 162, 2019, pp. 31–43. https://doi.org/10.1016/j.compag.2019.03.025.10.1016/j.compag.2019.03.025 Search in Google Scholar

[15] J.R. Llera, E.D. Goodman, E.S. Runkle, L. Xu, Improving greenhouse environmental control using crop-model-driven multi-objective optimization, In: Genetic and Evolutionary Computation Conference Companion (GECCO’ 18), Kyoto, Japan, 2018, pp. 292 – 293. https://doi.org/10.1145/3205651.3205724.10.1145/3205651.3205724 Search in Google Scholar

[16] C.H. Guzman, J.L. Carrera, H.A. Duran, J. Berumen, A.A. Ortiz, O.A. Guirette, A. Arroyo, J.A. Brizuela, F. Gomez, A. Blanco, H.R. Azcaray, M. Hernandez, Implementation of Virtual Sensors for Monitoring Temperature in Greenhouses Using CFD and Control, Sensors, 19 (1), 2018, pp. 1–13. https://doi.org/10.3390/s19010060.10.3390/s19010060633902430586913 Search in Google Scholar

[17] H. Wang, J.A. Sanchez-Molina, M. Li, F.R. Diaz, Improving the Performance of Vegetable Leaf Wetness Duration Models in Greenhouses Using Decision Tree Learning, Water, 11 (1), 2019, pp. 1–19. https://doi.org/10.3390/w11010158.10.3390/w11010158 Search in Google Scholar

[18] J. Agajo, J.G. Kolo, G. Jonas, A.R. Opeyemi, N.O. Chikeze, O.B. Chukwujekwu, A modified web-based agro-climatic remote monitoring system via wireless sensor network, In: 2017 IEEE 3rd Int. Conf. on Electro-Technology for National Development (NIGER-CON), Owerri, Nigeria, 2018, pp. 258–270. https://doi.org/10.1109/NIGERCON.2017.8281898.10.1109/NIGERCON.2017.8281898 Search in Google Scholar

[19] M. Azaza, K. Echaieb, E. Fabrizio, A. Iqbal, A. Mami, An intelligent system for the climate control and energy savings in agricultural greenhouses, Energy Efficiency, 9 (6), 2016, pp. 1241–1255. https://doi.org/10.1007/s12053-015-9421-8.10.1007/s12053-015-9421-8 Search in Google Scholar

[20] Zh. Xu, J. Chen, Switching Control Strategy for Greenhouse Temperature-Humidity System Based on Prediction Modeling: A Simulation Study, Journal of Engineering and Technological Sciences, 49 (5), 2017, pp. 689–703. https://doi.org/10.20944/preprints201611.0044.v1.10.20944/preprints201611.0044.v1 Search in Google Scholar

[21] M. Taki, Y. Ajabshirchi, S. Faramarz Ranjbar, M. Matloobi, Application of neural networks and multiple regression models in greenhouse climate estimation, AgricEngInt: CIGR Journal, 18 (3), 2016, pp. 29–43. URL: https://cigrjournal.org/index.php/Ejounral/article/view/3672/2414 Search in Google Scholar

[22] Y. Kaneda, H. Ibayashi, N. Oishi, H. Mineno, Greenhouse Environmental Control System Based on SW-SVR, Procedia Computer Science, 60 (1), 2015, pp. 860–869. https://doi.org/10.1016/j.procs.2015.08.249.10.1016/j.procs.2015.08.249 Search in Google Scholar

[23] T.A. Izzuddin, M.A. Johari, M.Z.A. Rashid, M.H. Jali, Smart irrigation using fuzzy logic method, ARPN Journal of Engineering and Applied Sciences, 13 (2), 2018, pp. 517–522. URL: http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_0118_6698.pdf Search in Google Scholar

[24] C. Algarin, J. Cabarcas, A. Llanos, Low-Cost Fuzzy Logic Control for Greenhouse Environments with Web Monitoring, Electronics, 6 (4), 2017, pp. 1–12. https://doi.org/10.3390/electronics6040071.10.3390/electronics6040071 Search in Google Scholar

[25] R. Ben Ali, E. Aridhi, M. Abbes, A. Mami, Fuzzy logic controller of temperature and humidity inside an agricultural greenhouse, In: 7th International Renewable Energy Congress (IREC), Hammamet, Tunis, 2016, pp. 1–6. https://doi.org/10.1109/IREC.2016.7478929.10.1109/IREC.2016.7478929 Search in Google Scholar

[26] O. Alpay, E. Erdem, The Control of Greenhouses Based on Fuzzy Logic Using Wireless Sensor Networks, Int. J. of Computational Intelligence Systems, 12 (1), 2019, pp. 190–203. https://doi.org/10.2991/ijcis.2018.125905641.10.2991/ijcis.2018.125905641 Search in Google Scholar

[27] A.J. Both, L. Benjamin, J. Franklin, G. Holroyd, L.D. Incoll, M.G. Lefsrud, G. Pitkin, Guidelines for measuring and reporting environmental parameters for experiments in greenhouses, Plant Methods, 11 (43), 2015, pp. 1–18. https://doi.org/10.1186/s13007-015-0083-5.10.1186/s13007-015-0083-5456783026366189 Search in Google Scholar

[28] W. Baudoin, Good agricultural practices for greenhouse vegetable crops: Principles for mediterranean climate areas, FAO of the United Nations, Rome 2013. URL: https://agris.fao.org/agris-search/search.do?recordID=XF2013001549 Search in Google Scholar

eISSN:
2449-6499
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Computer Sciences, Databases and Data Mining, Artificial Intelligence