Zacytuj

[1] O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, in International Conference on Medical image computing and computer-assisted intervention. Springer, 2015, pp. 234–241.10.1007/978-3-319-24574-4_28 Search in Google Scholar

[2] G. Litjens, R. Toth, W. van de Ven, C. Hoeks, S. Kerkstra, B. van Ginneken, G. Vincent, G. Guillard, N. Birbeck, J. Zhang et al., Evaluation of prostate segmentation algorithms for mri: the promise12 challenge, Medical image analysis, vol. 18, no. 2, pp. 359–373, 2014.10.1016/j.media.2013.12.002413796824418598 Search in Google Scholar

[3] MICCAI challenges, http://www.miccai.org/events/challenges/, 2020, accessed: 2020-08-03. Search in Google Scholar

[4] grand-challenge.org challenges, https://grand-challenge.org/challenges/, 2020, accessed: 2020-08-03. Search in Google Scholar

[5] R. Cuocolo, A. Comelli, A. Stefano, V. Benfante, N. Dahiya, A. Stanzione, A. Castaldo, D. R. De Lucia, A. Yezzi, and M. Imbriaco, Deep learning whole-gland and zonal prostate segmentation on a public mri dataset, Journal of Magnetic Resonance Imaging, 2021.10.1002/jmri.2758533634932 Search in Google Scholar

[6] A. Comelli, N. Dahiya, A. Stefano, F. Vernuccio, M. Portoghese, G. Cutaia, A. Bruno, G. Salvaggio, and A. Yezzi, Deep learning-based methods for prostate segmentation in magnetic resonance imaging, Applied Sciences, vol. 11, no. 2, p. 782, 2021.10.3390/app11020782793230633680505 Search in Google Scholar

[7] M. Penso, S. Moccia, S. Scafuri, G. Muscogiuri, G. Pontone, M. Pepi, and E. G. Caiani, Automated left and right ventricular chamber segmentation in cardiac magnetic resonance images using dense fully convolutional neural network, Computer Methods and Programs in Biomedicine, vol. 204, p. 106059, 2021.10.1016/j.cmpb.2021.106059 Search in Google Scholar

[8] Y. Xie, J. Zhang, C. Shen, and Y. Xia, Cotr: Efficiently bridging cnn and transformer for 3d medical image segmentation, arXiv preprint arXiv:2103.03024, 2021.10.1007/978-3-030-87199-4_16 Search in Google Scholar

[9] J. Chen, Y. Lu, Q. Yu, X. Luo, E. Adeli, Y. Wang, L. Lu, A. L. Yuille, and Y. Zhou, Transunet: Transformers make strong encoders for medical image segmentation, arXiv preprint arXiv:2102.04306, 2021. Search in Google Scholar

[10] Y. Shu, J. Zhang, B. Xiao, and W. Li, Medical image segmentation based on active fusion-transduction of multi-stream features, Knowledge-Based Systems, vol. 220, p. 106950, 2021.10.1016/j.knosys.2021.106950 Search in Google Scholar

[11] H. H. Bo Wang, Shuang Qiu, Dual encoding unet for retinal vessel segmentation, Medical Image Computing and Computer Assisted Intervention, vol. 11764, pp. 84–92, 2019.10.1007/978-3-030-32239-7_10 Search in Google Scholar

[12] R. Azad, M. Asadi-Aghbolaghi, M. Fathy, and S. Escalera, Bi-directional convlstm u-net with densley connected convolutions. institute of electrical and electronics engineers (ieee); 2019; 406–415, 2020.10.1109/ICCVW.2019.00052 Search in Google Scholar

[13] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, mixup: Beyond empirical risk minimization, arXiv preprint arXiv:1710.09412, 2017. Search in Google Scholar

[14] Y. Tokozume, Y. Ushiku, and T. Harada, Between-class learning for image classification, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 5486–5494.10.1109/CVPR.2018.00575 Search in Google Scholar

[15] Y. Tokozume, Y. Ushiki, and T. Harada, Learning from between-class examples for deep sound recognition, arXiv preprint arXiv:1711.10282, 2017. Search in Google Scholar

[16] H. Inoue, Data augmentation by pairing samples for images classification, arXiv preprint arXiv:1801.02929, 2018. Search in Google Scholar

[17] L. Perez and J. Wang, The effectiveness of data augmentation in image classification using deep learning, arXiv preprint arXiv:1712.04621, 2017. Search in Google Scholar

[18] D. Liang, F. Yang, T. Zhang, and P. Yang, Understanding mixup training methods, IEEE Access, vol. 6, pp. 58 774–58 783, 2018.10.1109/ACCESS.2018.2872698 Search in Google Scholar

[19] C. Summers and M. J. Dinneen, Improved mixed-example data augmentation, in 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2019, pp. 1262–1270.10.1109/WACV.2019.00139 Search in Google Scholar

[20] Promise12 online challenge leaderboard, https://promise12.grand-challenge.org/evaluation/leaderboard/, 2020, accessed: 2020-08-04. Search in Google Scholar

[21] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–1034.10.1109/ICCV.2015.123 Search in Google Scholar

[22] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, 2014. Search in Google Scholar

[23] M. Zhang, J. Lucas, J. Ba, and G. E. Hinton, Lookahead optimizer: k steps forward, 1 step back, in Advances in Neural Information Processing Systems, 2019, pp. 9597–9608. Search in Google Scholar

[24] Z. Wu, C. Shen, and A. v. d. Hengel, Bridging category-level and instance-level semantic image segmentation, arXiv preprint arXiv:1605.06885, 2016. Search in Google Scholar

[25] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N. Y. Hammerla, B. Kainz et al., Attention u-net: Learning where to look for the pancreas, arXiv preprint arXiv:1804.03999, 2018. Search in Google Scholar

[26] M. Z. Alom, M. Hasan, C. Yakopcic, T. M. Taha, and V. K. Asari, Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation, arXiv preprint arXiv:1802.06955, 2018.10.1109/NAECON.2018.8556686 Search in Google Scholar

[27] R. R. Shamir, Y. Duchin, J. Kim, G. Sapiro, and N. Harel, Continuous dice coefficient: a method for evaluating probabilistic segmentations, arXiv preprint arXiv:1906.11031, 2019.10.1101/306977 Search in Google Scholar

[28] S. Thulasidasan, G. Chennupati, J. A. Bilmes, T. Bhattacharya, and S. Michalak, On mixup training: Improved calibration and predictive uncertainty for deep neural networks, in Advances in Neural Information Processing Systems, 2019, pp. 13 888–13 899.10.2172/1525811 Search in Google Scholar

eISSN:
2449-6499
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Computer Sciences, Artificial Intelligence, Databases and Data Mining