[
Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Davila Delgado, J. M., Bilal, M., Akinade, O. O., & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44, 103299. https://doi.org/10.1016/j.jobe.2021.103299.
]Search in Google Scholar
[
Ali, A. K., Lee, O. J., & Song, H. (2021). Robot-based facade spatial assembly optimization. Journal of Building Engineering, 33, 101556. https://doi.org/10.1016/j.jobe.2020.101556.
]Search in Google Scholar
[
Alsolami, B. M. (2022). Identifying and assessing critical success factors of value management implementation in Saudi Arabia building construction industry. Ain Shams Engineering Journal, 13(6), 101804. https://doi.org/10.1016/j.asej.2022.101804.
]Search in Google Scholar
[
Amani, M., & Akhavian, R. (2024). BIM-based Safe and Trustworthy Robot Pathfinding using Scalable MHA* Algorithms and Natural Language Processing. arXiv preprint arXiv: 2411.15371.
]Search in Google Scholar
[
Asadi, K., Kalkunte Suresh, A., Ender, A., Gotad, S., Maniyar, S., Anand, S., Noghabaei, M., Han, K., Lobaton, E., & Wu, T. (2020). An integrated UGV-UAV system for construction site data collection. Automation in Construction, 112, 103068. https://doi.org/10.1016/j.autcon.2019.103068.
]Search in Google Scholar
[
Balogun, H., Alaka, H., Demir, E., Egwim, C. N., Olu-Ajayi, R., Sulaimon, I., & Oseghale, R. (2024). Artificial intelligence for deconstruction: Current state, challenges, and opportunities. Automation in Construction, 166, 105641. https://doi.org/10.1016/j.autcon.2024.105641.
]Search in Google Scholar
[
Brinkhoff, M. J. S., & Kolani, M. R. (2024). Deriving Fabrication Information from BIM for Automated Robotic Task Planning. Forum Bauinformatik, fbi 2024, 188-195.
]Search in Google Scholar
[
Cai, S., Ma, Z., Skibniewski, M. J., Bao, S., & Wang, H. (2020). Construction Automation and Robotics for High-Rise Buildings: Development Priorities and Key Challenges. Journal of Construction Engineering and Management, 146(8), 04020096. https://doi.org/10.1061/(ASCE)CO.19437862.000181.
]Search in Google Scholar
[
Cao, S., Duan, H., Guo, S., Wu, J., Ai, T., & Jiang, H. (2024). BIM-based task planning method for wheeled-legged rebar binding robot. Architectural Engineering and Design Management, 20(3), 656-672. https://doi.org/10.1080/17452007.2024.2328134.
]Search in Google Scholar
[
Chen, J., Lu, W., Fu, Y., & Dong, Z. (2023). Automated facility inspection using robotics and BIM: A knowledge-driven approach. Advanced Engineering Informatics, 55, 101838. https://doi.org/10.1016/j.aei.2022.101838.
]Search in Google Scholar
[
Davila Delgado, J. M., Oyedele, L., Ajayi, A., Akanbi, L., Akinade, O., Bilal, M., & Owolabi, H. (2019). Robotics and automated systems in construction: Understanding industryspecific challenges for adoption. Journal of Building Engineering, 26, 100868. https://doi.org/10.1016/j.jobe.2019.100868.
]Search in Google Scholar
[
Dindorf, R., & Wos, P. (2024). Challenges of Robotic Technology in Sustainable Construction Practice. Sustainability, 16(13), 5500. https://www.mdpi.com/2071-1050/16/13/5500.
]Search in Google Scholar
[
Ding, L., Jiang, W., Zhou, Y., Zhou, C., & Liu, S. (2020). BIMbased task-level planning for robotic brick assembly through image-based 3D modeling. Advanced Engineering Informatics, 43, 100993. https://doi.org/10.1016/j.aei.2019.100993.
]Search in Google Scholar
[
Eastman, C. M. (2011). BIM handbook: A guide to building information modeling for owners, managers, designers, engineers and contractors. John Wiley & Sons.
]Search in Google Scholar
[
Follini, C., Magnago, V., Freitag, K., Terzer, M., Marcher, C., Riedl, M., Giusti, A., & Matt, D. T. (2021). BIM-Integrated Collaborative Robotics for Application in Building Construction and Maintenance. Robotics, 10(1). https://doi.org/10.3390/robotics10010002.
]Search in Google Scholar
[
Gorsuch, R. L. (2014). Factor analysis: Classic edition. Routledge.
]Search in Google Scholar
[
Huang, B., Liao, H., Ge, Y., Zhang, W., Kang, H., Wang, Z., & Wu, J. (2023). Development of BIM Semantic Robot Autonomous Inspection and Simulation System. 2023 9th International Conference on Mechatronics and Robotics Engineering (ICMRE), https://doi.org/10.1109/ICMRE56789.2023.10106602.
]Search in Google Scholar
[
Ibrahim, A., Sabet, A., & Golparvar-Fard, M. (2019). BIMdriven mission planning and navigation for automatic indoor construction progress detection using robotic ground platform. EC3 Conference 2019, 182-189. http://www.doi.org/10.35490/EC3.2019.195.
]Search in Google Scholar
[
Karimi, S., Braga, R. G., Iordanova, I., & St-Onge, D. (2021). Semantic optimal robot navigation using building information on construction sites. Proceedings of the International Symposium on Automation and Robotics in Construction, 57-64. https://doi.org/10.22260/ISARC2021/0010.
]Search in Google Scholar
[
Kim, S., Peavy, M., Huang, P.-C., & Kim, K. (2021). Development of BIM-integrated construction robot task planning and simulation system. Automation in Construction, 127, 103720. https://doi.org/10.1016/j.autcon.2021.103720.
]Search in Google Scholar
[
Kumar, V. P., Balasubramanian, M., & Raj, S. J. (2016). Robotics in construction industry. Indian Journal of Science and Technology, 9(23), 1-12. http://doi.org/10.17485/ijst/2016/v9i23/95974.
]Search in Google Scholar
[
Liang, C.-J., McGee, W., Menassa, C., & Kamat, V. (2020). Bidirectional communication bridge for state synchronization between digital twin simulations and physical construction robots. Proceedings of the International Symposium on Automation and Robotics in Construction, 1480-1487. https://doi.org/10.22260/ISARC2020/0205.
]Search in Google Scholar
[
Liao, L., Teo, E., & Low, S. (2017). A project management framework for enhanced productivity performance using building information modelling. Construction Economics and Building, 17, 1. https://doi.org/10.5130/AJCEB.v17i3.5389.
]Search in Google Scholar
[
Marinelli, M. (2023). From Industry 4.0 to Construction 5.0: Exploring the Path towards Human–Robot Collaboration in Construction. Systems, 11(3). https://doi.org/10.3390/systems11030152.
]Search in Google Scholar
[
Matsas, E., & Vosniakos, G.-C. (2017). Design of a virtual reality training system for human–robot collaboration in manufacturing tasks. International Journal on Interactive Design and Manufacturing (IJIDeM), 11(2), 139-153. https://doi.org/10.1007/s12008-015-0259-2.
]Search in Google Scholar
[
Netemeyer, R. G. (2003). Scaling procedures: Issues and applications. Sage Publications.
]Search in Google Scholar
[
Ohueri, C. C., Masrom, M. A. N., & Noguchi, M. (2024). Human-robot collaboration for building deconstruction in the context of construction 5.0. Automation in Construction, 167, 105723. https://doi.org/10.1016/j.autcon.2024.105723.
]Search in Google Scholar
[
Omar, F., & Fateh, M. A. M. (2023). Cost Benefit Analysis (CBA) in Building Information Modelling (BIM) Application in Government Healthcare Facilities Projects in Malaysia. Planning Malaysia, 21. https://doi.org/10.21837/pm.v21i26.1257.
]Search in Google Scholar
[
Othman, I., Al-Ashmori, Y. Y., Rahmawati, Y., Mugahed Amran, Y. H., & Al-Bared, M. A. M. (2021). The level of Building Information Modelling (BIM) Implementation in Malaysia. Ain Shams Engineering Journal, 12(1), 455-463. https://doi.org/10.1016/j.asej.2020.04.007.
]Search in Google Scholar
[
Oyediran, H., Turner, W., Kim, K., & Barrows, M. (2024). Integration of 4d bim and robot task planning: Creation and flow of construction-related information for action-level simulation of indoor wall frame installation. arXiv preprint: 2402.03602.
]Search in Google Scholar
[
Park, J., Cho, Y. K., & Martinez, D. (2016). A BIM and UWB integrated mobile robot navigation system for indoor position tracking applications. Journal of Construction Engineering and Project Management, 6(2), 30-39. http://doi.org/10.6106/JCEPM.2016.6.2.030.
]Search in Google Scholar
[
Rajabi, M. S., Rezaeiashtiani, M., Radzi, A. R., Famili, A., Rezaeiashtiani, A., & Rahman, R. A. (2022). Underlying Factors and Strategies for Organizational BIM Capabilities: The Case of Iran. Applied System Innovation, 5(6), 109. https://doi.org/10.3390/asi5060109.
]Search in Google Scholar
[
Saad Alotaibi, B., Waqar, A., Radu, D., M.Khan, A., Dodo, Y., Althoey, F., & Almujibah, H. (2024). Building information modeling (BIM) adoption for enhanced legal and contractual management in construction projects. Ain Shams Engineering Journal, 15(7), 102822. https://doi.org/10.1016/j.asej.2024.102822.
]Search in Google Scholar
[
Saidi, K. S., Bock, T., & Georgoulas, C. (2016). Robotics in construction. In Springer handbook of robotics (pp. 1493-1520). Springer.
]Search in Google Scholar
[
Sinoh, S. S., Othman, F., & Ibrahim, Z. (2020). Critical success factors for BIM implementation: a Malaysian case study. Engineering, Construction and Architectural Management, 27(9), 2737-2765. https://doi.org/10.1108/ECAM-09-2019-0475.
]Search in Google Scholar
[
Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in science education, 48, 1273-1296. https://doi.org/10.1007/s11165-016-9602-2.
]Search in Google Scholar
[
Tan, S., & Gumusburun Ayalp, G. (2022). Root factors limiting BIM implementation in developing countries: sampling the Turkish AEC industry. Open House International, 47(4), 732-762. https://doi.org/10.1108/OHI-12-2021-0273.
]Search in Google Scholar
[
Van Tam, N., Toan, N. Q., & Van Phong, V. (2024). Investigating potential barriers to construction digitalization in emerging economies: A study in Vietnam. International Journal of Information Management Data Insights, 4(1), 100226. https://doi.org/10.1016/j.jjimei.2024.100226.
]Search in Google Scholar
[
Wang, M., Wang, C. C., Sepasgozar, S., & Zlatanova, S. (2020). A Systematic Review of Digital Technology Adoption in Off- Site Construction: Current Status and Future Direction towards Industry 4.0. Buildings, 10(11), 204. https://doi.org/10.3390/buildings10110204.
]Search in Google Scholar
[
Zaeem, D. (2024). Integrating BIM with robotic task planning and simulation using Python and Gazebo.
]Search in Google Scholar
[
Zhang, J., Luo, H., & Xu, J. (2022). Towards fully BIM-enabled building automation and robotics: A perspective of lifecycle information flow. Computers in Industry, 135, 103570. https://doi.org/10.1016/j.compind.2021.103570.
]Search in Google Scholar
[
Zhao, X., Jin, Y., Selvaraj, N. M., Ilyas, M., & Cheah, C. C. (2023). Platform-independent visual installation progress monitoring for construction automation. Automation in Construction, 154, 104996. https://doi.org/10.1016/j.autcon.2023.104996.
]Search in Google Scholar