Zacytuj

Aliabdo, A. A., Abd Elmoaty, M., Aboshama, A. Y. J. C., & Materials, B. (2016). Utilization of waste glass powder in the production of cement and concrete. 124, 866-877. Search in Google Scholar

Araghi, H. J., Nikbin, I., Reskati, S. R., Rahmani, E., Allahyari, H. J. C., & Materials, B. (2015). An experimental investigation on the erosion resistance of concrete containing various PET particles percentages against sulfuric acid attack. 77, 461-471. Search in Google Scholar

Atakan, V., Sahu, S., Quinn, S., Hu, X., & DeCristofaro, N. J. Z. i. (2014). Why CO2 matters-advances in a new class of cement. (3), 60-63. Search in Google Scholar

Awoyera, P., Gobinath, R., Haripriya, S., & Kulandaisami, P. (2020). New light weight mortar for structural application: assessment of porosity, strength and morphology properties. Paper presented at the International Conference on Emerging Trends in Engineering (ICETE) Emerging Trends in Smart Modelling Systems and Design. Search in Google Scholar

Barbara, D., Marta, J., Beata, S.-M., & Florian, R. J. C. J. o. F. S. (2016). Use of eggshells as a raw material for production of calcium preparations. 34(4), 313-317. Search in Google Scholar

Behnood, A., Ziari, H. J. C., & Composites, C. (2008). Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. 30(2), 106-112. Search in Google Scholar

Bontempi, E., & Bontempi, E. J. R. M. S. S. (2017). A new approach to evaluate the sustainability of raw materials substitution. 79-101. Search in Google Scholar

Cather, B. J. C. (1997). Calcium aluminate cements in construction: a re-assessmemt. 31(4), 17-18. Search in Google Scholar

CHAKARTNARODOM, P., SONPRASARN, P., POLSILAPA, S., KONGKAJUN, N., LAITILA, E., PRAKAYPAN, W. J. J. o. M., Materials, & Minerals. (2023). The influence of water-cement ratios and alumino-silicate based accelerator on the properties of fiber-reinforced cement composites. 33(2), 75-80. Search in Google Scholar

Chen, R., Li, Y., Xiang, R., Li, S. J. C., & Materials, B. (2016). Effect of particle size of fly ash on the properties of lightweight insulation materials. 123, 120-126. Search in Google Scholar

Council, W. J. T. C. S. I., Cement Industry Energy, & Right, C. P. G. t. N. (2009). World Business Council for Sustainable Development. Search in Google Scholar

Crossin, E. J. J. o. C. P. (2015). The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. 95, 101-108. Search in Google Scholar

Danish, A., Salim, M. U., Ahmed, T. J. S. S., & Materials, a. I. J. (2019). Trends and developments in green cement “A sustainable approach”. 2(1), 45-60. Search in Google Scholar

Duxson, P., & Provis, J. L. J. J. o. t. a. c. s. (2008). Designing precursors for geopolymer cements. 91(12), 3864-3869. Search in Google Scholar

Energy, C. I. The Cement Sustainability Initiative. Search in Google Scholar

Environment, U., Scrivener, K. L., John, V. M., Gartner, E. M. J. C., & Research, c. (2018). Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. 114, 2-26. Search in Google Scholar

Gartner, E., Sui, T. J. C., & Research, C. (2018). Alternative cement clinkers. 114, 27-39. Search in Google Scholar

Gergely, G., Wéber, F., Lukács, I., Tóth, A. L., Horváth, Z. E., Mihály, J., & Balázsi, C. J. C. I. (2010). Preparation and characterization of hydroxyapatite from eggshell. 36(2), 803-806. Search in Google Scholar

Golewski, G. L. J. J. o. c. p. (2018). Green concrete composite incorporating fly ash with high strength and fracture toughness. 172, 218-226. Search in Google Scholar

Gupta, A. R., & Rathod, V. K. J. W. m. (2018). Waste cooking oil and waste chicken eggshells derived solid base catalyst for the biodiesel production: Optimization and kinetics. 79, 169-178. Search in Google Scholar

Habert, G. (2014). Assessing the environmental impact of conventional and ‘green’cement production. In Eco-efficient construction and building materials (pp. 199-238): Elsevier. Search in Google Scholar

Habert, G., De Lacaillerie, J. D. E., & Roussel, N. J. J. o. c. p. (2011). An environmental evaluation of geopolymer based concrete production: reviewing current research trends. 19(11), 1229-1238. Search in Google Scholar

Hasanbeigi, A., Price, L., Lu, H., & Lan, W. J. E. (2010). Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants. 35(8), 3461-3473. Search in Google Scholar

Hendriks, C. A., Worrell, E., De Jager, D., Blok, K., & Riemer, P. (1998). Emission reduction of greenhouse gases from the cement industry. Paper presented at the Proceedings of the fourth international conference on greenhouse gas control technologies. Search in Google Scholar

Hesami, S., Ahmadi, S., Nematzadeh, M. J. C., & Materials, B. (2014). Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement. 53, 680-691. Search in Google Scholar

Imbabi, M. S., Carrigan, C., & McKenna, S. J. I. J. o. S. B. E. (2012). Trends and developments in green cement and concrete technology. 1(2), 194-216. Search in Google Scholar

Juenger, M., Winnefeld, F., Provis, J. L., Ideker, J. J. C., & research, c. (2011). Advances in alternative cementitious binders. 41(12), 1232-1243. Search in Google Scholar

Kartini, K., Hamidah, M., Norhana, A., Nur Hanani, A. J. J. o. E. S., & Technology. (2014). Quarry dust fine powder as substitute for ordinary Portland cement in concrete mix. 9(2), 191-205. Search in Google Scholar

Le, H. T., Müller, M., Siewert, K., Ludwig, H.-M. J. M., & design. (2015). The mix design for self-compacting high performance concrete containing various mineral admixtures. 72, 51-62. Search in Google Scholar

Li, C., Sun, H., Li, L. J. C., & research, c. (2010). A review: The comparison between alkali-activated slag (Si+ Ca) and metakaolin (Si+ Al) cements. 40(9), 1341-1349. Search in Google Scholar

Lund, P. J. E. E. (2007). Impacts of EU carbon emission trade directive on energy-intensive industries—Indicative microeconomic analyses. 63(4), 799-806. Search in Google Scholar

Mohebi, Z., Bahnamiri, A., Dehestani, M. J. C., & Materials, B. (2019). Effect of polypropylene fibers on bond performance of reinforcing bars in high strength concrete. 215, 401-409. Search in Google Scholar

Mohseni, E., Naseri, F., Amjadi, R., Khotbehsara, M. M., & Ranjbar, M. M. J. C. B. M. (2016). Microstructure and durability properties of cement mortars containing nano-TiO2 and rice husk ash. 114, 656-664. Search in Google Scholar

Ojan, M., Montenegro, P., Borsa, M., Altert, C., & Fielding, R. (2016). Development of New Types of Low Carbon Cement. Search in Google Scholar

Pacheco-Torgal, F., Castro-Gomes, J., Jalali, S. J. C., & Materials, b. (2008). Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. 22(7), 1305-1314. Search in Google Scholar

Qin, Y., Zhang, X., Chai, J., Xu, Z., Li, S. J. C., & Materials, B. (2019). Experimental study of compressive behavior of polypropylene-fiber-reinforced and polypropylene-fiber-fabric-reinforced concrete. 194, 216-225. Search in Google Scholar

Quina, M. J., Soares, M. A., Quinta-Ferreira, R. J. R., Conservation, & Recycling. (2017). Applications of industrial eggshell as a valuable anthropogenic resource. 123, 176-186. Search in Google Scholar

Rao, A., Jha, K. N., Misra, S. J. R., conservation, & Recycling. (2007). Use of aggregates from recycled construction and demolition waste in concrete. 50(1), 71-81. Search in Google Scholar

Rivera, E. M., Araiza, M., Brostow, W., Castano, V. M., Dıaz-Estrada, J., Hernández, R., & Rodrıguez, J. R. J. M. L. (1999). Synthesis of hydroxyapatite from eggshells. 41(3), 128-134. Search in Google Scholar

Saboo, N., Shivhare, S., Kori, K. K., Chandrappa, A. K. J. C., & Materials, B. (2019). Effect of fly ash and metakaolin on pervious concrete properties. 223, 322-328. Search in Google Scholar

Salaudeen, S. A., Tasnim, S. H., Heidari, M., Acharya, B., & Dutta, A. J. W. M. (2018). Eggshell as a potential CO2 sorbent in the calcium looping gasification of biomass. 80, 274-284. Search in Google Scholar

Schneider, M., Romer, M., Tschudin, M., Bolio, H. J. C., & research, c. (2011). Sustainable cement production—present and future. 41(7), 642-650. Search in Google Scholar

Scrivener, K., & Capmas, A. J. A. c. t. (2003). Calcium aluminate cements. 3, 1-31. Search in Google Scholar

Shafigh, P., Nomeli, M. A., Alengaram, U. J., Mahmud, H. B., & Jumaat, M. Z. J. J. o. C. P. (2016). Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. 135, 148-157. Search in Google Scholar

Siemiradzka, W., Dolinska, B., & Ryszka, F. J. C. p. b. (2018). New sources of calcium (chicken eggshells, chelates)-preparation of raw material and tablets. 19(7), 566-572. Search in Google Scholar

Sivakrishna, A., Awoyera, P., Oshin, S., Suji, D., Gobinath, R. J. J. o. E. S., & Technology. (2019). Fabrication of precast concrete slab panels incorporating foundry sand and blast furnace slag as a potential wall insulator. 20(Y). Search in Google Scholar

Stemmermann, P., Beuchle, G., Garbev, K., & Schweike, U. C. (2011). A new sustainable hydraulic binder based on calcium hydrosilicates. Paper presented at the Proceedings of the 13th international congress on the chemistry of cement. Search in Google Scholar

Stemmermann, P., Schweike, U., Garbev, K., Beuchle, G., & Möller, H. J. C. I. (2010). Celitement–a sustainable prospect for the cement industry. 8(5), 52-66. Search in Google Scholar

Summaries, M. C. J. V., USA. (2018). US Geological Survey: Reston. 200. Search in Google Scholar

Teo, S. H., Islam, A., Masoumi, H. R. F., Taufiq-Yap, Y. H., Janaun, J., & Chan, E.-S. J. R. E. (2017). Effective synthesis of biodiesel from Jatropha curcas oil using betaine assisted nanoparticle heterogeneous catalyst from eggshell of Gallus domesticus. 111, 892-905. Search in Google Scholar

Thorneycroft, J., Orr, J., Savoikar, P., Ball, R. J. C., & Materials, B. (2018). Performance of structural concrete with recycled plastic waste as a partial replacement for sand. 161, 63-69. Search in Google Scholar

Tian, H., Zhang, Y., Ye, L., Yang, C. J. C., & Materials, B. (2015). Mechanical behaviours of green hybrid fibre-reinforced cementitious composites. 95, 152-163. Search in Google Scholar

Tsai, W.-T., Hsien, K.-J., Hsu, H.-C., Lin, C.-M., Lin, K.-Y., & Chiu, C.-H. J. B. t. (2008). Utilization of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution. 99(6), 1623-1629. Search in Google Scholar

Valipour, M., Yekkalar, M., Shekarchi, M., & Panahi, S. J. J. o. C. P. (2014). Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments. 65, 418-423. Search in Google Scholar

van Deventer, J. S., Provis, J. L., Duxson, P., Brice, D. G. J. W., & Valorization, B. (2010). Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. 1, 145-155. Search in Google Scholar

Witoon, T. J. C. I. (2011). Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent. 37(8), 3291-3298. Search in Google Scholar

Yang, K.-H., Jung, Y.-B., Cho, M.-S., & Tae, S.-H. J. J. o. C. P. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. 103, 774-783. Search in Google Scholar

Zunino, F., Lopez, M. J. C., & composites, c. (2016). Decoupling the physical and chemical effects of supplementary cementitious materials on strength and permeability: A multilevel approach. 65, 19-28. Search in Google Scholar

eISSN:
2284-7197
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other, Electrical Engineering, Energy Engineering, Geosciences, Geodesy