Zacytuj

Banerjee P, Eckert AO, Schrey AK, Preissner R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res46 (W1): W257–W263.Search in Google Scholar

Chen C, Kolodner R.D. (1999). Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet.23: 81–85..Search in Google Scholar

Enayat S, Şeyma Ceyhan M, Taşkoparan B, Stefek M, Banerjee S. (2016). CHNQ, a novel 2-Chloro-1,4-naphthoquinone derivative of quercetin, induces oxidative stress and autophagy both in vitro and in vivo. Arch Biochem Biophys596: 84–98.Search in Google Scholar

Hevir-Kene N, Rižner TL. (2015). The endometrial cancer cell lines Ishikawa and HEC-1A, and the control cell line HIEEC, differ in expression of estrogen biosynthetic and metabolic genes, and in androstenedione and estronesulfate metabolism. Chem Biol Interact234: 309–19.Search in Google Scholar

Ishiyama M. (1995). Advantages of WST-1compared to MTT agents. In vitro Toxicology8: 187–189.Search in Google Scholar

Kljun J, Anko M, Traven K, Sinreih M, Pavlič R, Peršič Š, Ude Ž, Codina EE, Stojan J, Lanišnik Rižner T, Turel I. (2016). Pyrithione-based ruthenium complexes as inhibitors of aldo-keto reductase 1C enzymes and anticancer agents. Dalton Trans45(29): 11791–800.Search in Google Scholar

Kwolek-Mirek M, Zadrag-Tecza R. (2014). Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res14(7): 1068–1079.Search in Google Scholar

Mrvová N, Škandík M, Kuniaková M, Račková L. (2015). Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester. Neurochem Int. 90: 246–54.Search in Google Scholar

Milackova I, Rackova L, Majekova M, Mrvova N, Stefek M. (2015). Protection or cytotoxicity mediated by a novel quinonoid-polyphenol compound? Gen Physiol Biophys34(1): 51–64.10.4149/gpb_201402825367759Search in Google Scholar

Pamies D, Hartung T. (2017). 1st Century Cell Culture for 21st Century Toxicology. Chem Res Toxicol30(1): 43–52.Search in Google Scholar

Prnova MS, Ballekova J, Majekova M, Stefek M. (2015). Antioxidant action of 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid, an efficient aldose reductase inhibitor, in a 1,1’-diphenyl-2-picrylhydrazyl assay and in the cellular system of isolated erythrocytes exposed to tert-butyl hydroperoxide. Redox Rep20(6): 282–288.Search in Google Scholar

Raies AB, Bajic VB. (2016). In silico toxicology: computational methods for the prediction of chemical toxicity. WIREs Comput Mol Sci6: 147–172.Search in Google Scholar

Repetto G, del Peso A, Zurita JL. (2008). Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc3(7): 1125–31.Search in Google Scholar

Sato K, Yama K, Murao Y, Tatsunami R, Tampo Y. (2013). Epalrestat increases intracellular glutathione levels in Schwann cells through transcription regulation. Redox Biol2: 15–21.Search in Google Scholar

Sharma SR, Sharma N. (2008). Epalrestat, an aldose reductase inhibitor, in diabetic neuropathy: an Indian perspective. Ann Indian Acad Neurol1(4): 231–235.Search in Google Scholar

Slamenová D, Horváthová E, Wsólová L, Sramková M, Navarová J. (2009). Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines. Mutat Res677(1–2): 46–52.Search in Google Scholar

Soltesova-Prnova M, Ballekova J, Gajdosikova A, Gajdosik A, Stefek M. (2015a). A novel carboxymethylated mercaptotriazinoindole inhibitor of aldose reductase interferes with the polyol pathway in streptozotocin-induced diabetic rats. Physiol Res64(4): 587–591.10.33549/physiolres.93303426291727Search in Google Scholar

Soltesova-Prnova M, Majekova M, Milackova I, Díez-Dacal B, Pérez-Sala D, Ceyhan MS, Banerjee S, Stefek M. (2015b). [5-(Benzyloxy)-1H-indol-1-yl]acetic acid, an aldose reductase inhibitor and PPARγ ligand. Acta Biochim. Pol.62(3): 523–528.10.18388/abp.2014_95326345091Search in Google Scholar

Soltesova-Prnova M, Svik K, Bezek S, Kovacikova L, Karasu C, Stefek M. (2019). 3-Mercapto-5H-1,2,4-Triazino[5,6-b]Indole-5-Acetic Acid (Cemtirestat) Alleviates Symptoms of Peripheral Diabetic Neuropathy in Zucker Diabetic Fatty (ZDF) Rats: A Role of Aldose Reductase. Neurochem Res44(5): 1056–1064.Search in Google Scholar

Stefek M, Milackova I, Díez-Dacal B, Pérez-Sala D, Soltesova-Prnova M. (2017). Use of 5-carboxymethyl-3-mercapto-1,2,4-triazino-[5,6-b]indoles and their pharmaceutical composition. Slovak Patent No. 288508.Search in Google Scholar

Stefek M, Soltesova-Prnova M, Ballekova J, Majekova M. (2016). Cemtirestat, a novel aldose reductase inhibitor and antioxidant, in multitarget pharmacology of diabetic complications. International Journal of Advances in Science, Engineering and Technology. IRAJ 4(3): 41–44.Search in Google Scholar

Stefek M, Soltesova-Prnova M, Majekova M, Rechlin C, Heine A, Klebe G. (2015). Identification of novel aldose reductase inhibitors based on carboxymethylated mercaptotriazinoindole scaffold. J Med Chem58(6): 2649–2657.Search in Google Scholar

Stockert JC, Horobin RW, Colombo LL, and Blázquez-Castro A. (2018). Tetrazolium salts and formazan products in cell biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochemica120: 159–167.Search in Google Scholar

Vega-Avila E, Pugsley MK. (2011). An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc54: 10–14.Search in Google Scholar

Viskupicova J, Zizkova P, Rackova L, Horakova L. (2017). Pycnogenol Cytotoxicity in Pancreatic INS-1E β cells Induced by Calcium Dysregulation. Phytother Res31(11): 1702–1707.Search in Google Scholar

Yabe-Nishimura, C. (1998). Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev50: 21−33.Search in Google Scholar

eISSN:
1337-9569
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, Pharmacology, Toxicology