Otwarty dostęp

Heart Failure – Multisystem Syndrome

, ,  oraz   
23 lip 2025

Zacytuj
Pobierz okładkę

Abbate A, Narula J. Role of Apoptosis in Adverse Ventricular Remodeling. Heart Fail. Clin. 2012;8:79-86. Search in Google Scholar

Moe GW, Marín-García J. Role of Cell Death in the Progression of Heart Failure. Heart Fail. Rev. 2016;21: 157-167. Search in Google Scholar

Guo X, Chen Y, Liu Q. Necroptosis in Heart Disease: Molecular Mechanisms and Therapeutic Implications. J. Mol. Cell Cardiol. 2022;169:74-83. Search in Google Scholar

Zhe-Wei S, Li-Sha G, Yue-Chun L. The Role of Necroptosis in Cardiovascular Disease. Front. Pharmacol. 2018;9:721. Search in Google Scholar

Piamsiri C, Maneechote C, Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Targeting Necroptosis as Therapeutic Potential in Chronic Myocardial Infarction. J. Biomed. Sci. 2021;28:25. Search in Google Scholar

Simmonds SJ, Cuijpers I, Heymans S, et al. Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells. 2020;9:242. Search in Google Scholar

van Heerebeek L, Borbely A, Niessen HW, et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation 2006;113:1966-73. Search in Google Scholar

Czepluch FS, Wollnik B, Hasenfuß G. Genetic determinants of heart failure: facts and numbers. ESC Heart Failure 2018;5:211-7. Search in Google Scholar

Seravalle G, Quarti-Trevano F, Dell'Oro R, et al. Sympathetic and baroreflex alterations in congestive heart failure with preserved, midrange and reduced ejection fraction. J Hypertens. 2019;37:443-8. Search in Google Scholar

Schwinger RHG, Böhm M, Koch A, et al. The Failing Human Heart is unable to use the Frank-Starling Mechanism. Circ Res. 1994;74:959-69. Search in Google Scholar

Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. 2010;122:2727-3. Search in Google Scholar

Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of beta-adrenergic signaling in heart failure? Circ Res. 2003 Nov 14;93(10):896-906. doi: 10.1161/01.RES.0000102042.83024.CA. PMID: 14615493. Search in Google Scholar

Böhm M, LaRosee K, Schwinger RHG, et al. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J AmColl Cardiol. 1995;25:146-53. Search in Google Scholar

Goldsmith SR. The role of vasopressin in congestive heart failure. Cleve Clin JMed. 2006;73:S19-23. Search in Google Scholar

Urata H, Arakawa K. Angiotensin II-forming systems in cardiovascular diseases. Heart Failure Rev. 1998;3:119-24. Search in Google Scholar

Dendorfer A, Thornagel A, Raasch W, et al. Angiotensin II induces catecholamine release by direct ganglionic excitation. Hypertension 2002;40:348-54. Search in Google Scholar

Richards AM. The renin-angiotensin-aldosterone system and the cardiac natriuretic peptides. Heart. 1996;76:36-44. Search in Google Scholar

Maisel A, Mueller C, Adams K Jr, et al. State of the art: using natriuretic peptide levels in clinical practice. Eur J Heart Fail. 2008;10:824-39. Search in Google Scholar

Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49:241-8. Search in Google Scholar

van der Meer P, Gaggin HK, Dec W. ACC/AHA versus ESC guidelines on heart failure. JACC. 2019;73:2756-68. Search in Google Scholar

Triposkiadis F, Butler J, Abboud FM, et al. The continuous heart failure spectrum: moving beyond an ejection fraction classification. Eur Heart J. 2019;40:2155-63. Search in Google Scholar

Varzideh F, Kansakar U, Donkor K, Wilson S, Jankauskas SS, Mone P, Wang X, Lombardi A, Santulli G. Cardiac Remodeling After Myocardial Infarction: Functional Contribution of MicroRNAs to Inflammation and Fibrosis. Front. Cardiovasc. Med. 2022;9:863238. Search in Google Scholar

Nagaraju CK, Dries E, Popovic N, Singh AA, Haemers P, Roderick HL, Claus P, Sipido KR, Driesen RB. Global Fibroblast Activation throughout the Left Ventricle but Localized Fibrosis after Myocardial Infarction. Sci. Rep. 2017;7:10801. Search in Google Scholar

Grosman-Rimon L, Billia F,Wright E, Carasso S, Elbaz-Greener G, Kachel E, Rao V, Cherney D. Neurohormones, inflammatory mediators, and cardiovascular injury in the setting of heart failure. Heart Fail. Rev. 2020;25:685-701. Search in Google Scholar

Ge Z, Li A, McNamara J, Dos Remedios C, Lal S. Pathogenesis and pathophysiology of heart failure with reduced ejection fraction: Translation to human studies. Heart Fail. Rev. 2019;24:743-758. Search in Google Scholar

Nägele MP, Barthelmes J, Kreysing L, Haider T, Ruschitzka F, Sudano I, Flammer AJ. Endocrine hormone imbalance in heart failure with reduced ejection fraction: A cross-sectional study. Health Sci. Rep. 2022;5:e880. Search in Google Scholar

Albaghdadi M, Gheorghiade M, Pitt B. Mineralocorticoid receptor antagonism: therapeutic potential in acute heart failure syndromes. Eur Heart.J. 2011;32(21):2626-2633. Search in Google Scholar

Manolis AS, Manolis TA, Manolis AA, Melita H. Neprilysin Inhibitors: Filling a Gap in Heart Failure Management, Albeit Amidst Controversy and at a Significant Cost. Am. J. Cardiovasc. Drugs. 2019;19:21-36. Search in Google Scholar

Leite M, Sampaio F, Saraiva FA, Diaz SO, Barros AS, Fontes-Carvalho R. The impact of heart failure therapy in patients with mildly reduced ejection fraction: A network meta-analysis. ESC Heart Fail. 2023;10:1822-1834. Search in Google Scholar

Urbach J, Goldsmith SR. Vasopressin antagonism in heart failure: A review of the hemodynamic studies and major clinical trials. Ther. Adv. Cardiovasc. Dis. 2021;15:17539447-20977741. Search in Google Scholar

Carabello BA. Concentric versus eccentric remodeling. J. Card. Fail. 2002;8:S258-S263. Search in Google Scholar

Dobrescu M, Dumitrache C. Sisteme endocrine în cardiologie. 2012, Ed. Național. Search in Google Scholar

Język:
Angielski