Otwarty dostęp

Deep reinforcement learning-based approach for control of Two Input–Two Output process control system

 oraz   
01 lip 2025

Zacytuj
Pobierz okładkę

Martinez-Piazuelo, Juan, Daniel E. Ochoa, Nicanor Quijano and Luis Felipe Giraldo. “A Multi-Critic Reinforcement Learning Method: An Application to Multi-Tank Water Systems.” IEEE Access 8 (2020): 173227–173238. Martinez-PiazueloJuan OchoaDaniel E. QuijanoNicanor GiraldoLuis Felipe “A Multi-Critic Reinforcement Learning Method: An Application to Multi-Tank Water Systems.” IEEE Access 8 2020 173227 173238 Search in Google Scholar

Wameedh Riyadh Abdul-Adheem, Ibraheem Kasim Ibraheem, Decoupled control scheme for output tracking of a general industrial nonlinear MIMO system using improved active disturbance rejection scheme, Alexandria Engineering Journal, Volume 58, Issue 4,2019, Pages 1145–1156, ISSN 1110-0168 Abdul-AdheemWameedh Riyadh IbraheemIbraheem Kasim Decoupled control scheme for output tracking of a general industrial nonlinear MIMO system using improved active disturbance rejection scheme Alexandria Engineering Journal 58 4 2019 1145 1156 ISSN 1110-0168 Search in Google Scholar

Xu, Jin, Han Li, and Qingxin Zhang. 2023. “Multivariable Coupled System Control Method Based on Deep Reinforcement Learning” Sensors 23, no. 21: 8679. XuJin LiHan ZhangQingxin 2023 “Multivariable Coupled System Control Method Based on Deep Reinforcement Learning” Sensors 23 21 8679 Search in Google Scholar

Ye L, Jiang P. Optimization control of the double-capacity water tank-level system using the deep deterministic policy gradient algorithm. Engineering Reports. 2023; 5(11): e12668. YeL JiangP Optimization control of the double-capacity water tank-level system using the deep deterministic policy gradient algorithm Engineering Reports 2023 5 11 e12668 Search in Google Scholar

Almeida, Alexandre Marques de, Marcelo Kaminski Lenzi, and Ervin Kaminski Lenzi. 2020. “A Survey of Fractional Order Calculus Applications of Multiple-Input, Multiple-Output (MIMO) Process Control” Fractal and Fractional 4, no. 2: 22. AlmeidaAlexandre Marques de LenziMarcelo Kaminski LenziErvin Kaminski 2020 “A Survey of Fractional Order Calculus Applications of Multiple-Input, Multiple-Output (MIMO) Process Control” Fractal and Fractional 4 2 22 Search in Google Scholar

Radac, Mircea-Bogdan, Radu-Emil Precup and Raul-Cristian Roman. “Data-driven model reference control of MIMO vertical tank systems with model-free VRFT and Q-Learning.” ISA transactions 73 (2018): 227–238. RadacMircea-Bogdan PrecupRadu-Emil RomanRaul-Cristian “Data-driven model reference control of MIMO vertical tank systems with model-free VRFT and Q-Learning.” ISA transactions 73 2018 227 238 Search in Google Scholar

Hajare, V.D., Patre, B.M., Khandekar, A.A. et al. Decentralized PID controller design for TITO processes with experimental validation. Int. J. Dynam. Control 5, 583–595 (2017). HajareV.D. PatreB.M. KhandekarA.A. Decentralized PID controller design for TITO processes with experimental validation Int. J. Dynam. Control 5 583 595 2017 Search in Google Scholar

Silver David, Guy Lever, Nicolas Manfred Otto Heess, Thomas Degris, Daan Wierstra and Martin A. Riedmiller. “Deterministic Policy Gradient Algorithms.” International Conference on Machine Learning (2014). SilverDavid LeverGuy HeessNicolas Manfred Otto DegrisThomas WierstraDaan RiedmillerMartin A. “Deterministic Policy Gradient Algorithms.” International Conference on Machine Learning 2014 Search in Google Scholar

M. D. L. Reddy, P. K. Padhy and I. Ahmad Ansari, “Auto-tuning Method for decentralized PID controller of TITO systems using firefly algorithm,” 2019 International Conference on Intelligent Computing and Control Systems (ICCS), Madurai, India, 2019, pp. 683–688. ReddyM. D. L. PadhyP. K. Ahmad AnsariI. “Auto-tuning Method for decentralized PID controller of TITO systems using firefly algorithm,” 2019 International Conference on Intelligent Computing and Control Systems (ICCS) Madurai, India 2019 683 688 Search in Google Scholar

Khalid, Junaid & Anwari, Makbul & Khan, Muhammad & Hidayat, T. (2022). Efficient Load Frequency Control of Renewable Integrated Power System: A Twin Delayed DDPG-Based Deep Reinforcement Learning Approach. IEEE Access. 10. 1–1. KhalidJunaid AnwariMakbul KhanMuhammad HidayatT. 2022 Efficient Load Frequency Control of Renewable Integrated Power System: A Twin Delayed DDPG-Based Deep Reinforcement Learning Approach IEEE Access 10 1 1 Search in Google Scholar

Ould Mohamed and Mohamed Vall, Design of Decoupled PI Controllers for Two-Input Two-Output Networked Control Systems with Intrinsic and Network-Induced Time Delays. Acta Mechanica et Automatica, 15, 201–208, December 2021. MohamedOuld VallMohamed Design of Decoupled PI Controllers for Two-Input Two-Output Networked Control Systems with Intrinsic and Network-Induced Time Delays Acta Mechanica et Automatica 15 201 208 December 2021 Search in Google Scholar

Reshma N. Pawar and Sharad P. Jadhav Design of NDT and PSO based Decentralized PID Controller for Wood-Berry Distillation Column IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI-2017). PawarReshma N. JadhavSharad P. Design of NDT and PSO based Decentralized PID Controller for Wood-Berry Distillation Column IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI-2017) Search in Google Scholar

Wood RK, Berry MW (1973) Terminal composition control of a binary distillation column. Chem Eng Sci 28(9):1707–1717. WoodRK BerryMW 1973 Terminal composition control of a binary distillation column Chem Eng Sci 28 9 1707 1717 Search in Google Scholar

Tavakoli S, Griffin I, Fleming PJ (2006) Tuning of decentralized PI(PID) controllers for TITO processes. Control Eng Pract 14(9):1069–1080. TavakoliS GriffinI FlemingPJ 2006 Tuning of decentralized PI(PID) controllers for TITO processes Control Eng Pract 14 9 1069 1080 Search in Google Scholar

Qiu C, Hu Y, Chen Y, Zeng B. Deep deterministic policy gradient (DDPG)-based energy harvesting wireless communications. IEEE Internet Things J. 2019;6(5):8577–8588. QiuC HuY ChenY ZengB Deep deterministic policy gradient (DDPG)-based energy harvesting wireless communications IEEE Internet Things J 2019 6 5 8577 8588 Search in Google Scholar

Yan, Z., & Xu, Y. (2020). A Multi-Agent Deep Reinforcement Learning Method for Cooperative Load Frequency Control of a Multi-Area Power System. IEEE Transactions on Power Systems, 35, 4599–4608. YanZ. XuY. 2020 A Multi-Agent Deep Reinforcement Learning Method for Cooperative Load Frequency Control of a Multi-Area Power System IEEE Transactions on Power Systems 35 4599 4608 Search in Google Scholar

Skiparev, V., Belikov, J., Petlenkov, E., & Levron, Y. (2022). Reinforcement Learning based MIMO Controller for Virtual Inertia Control in Isolated Microgrids. 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 1–5. SkiparevV. BelikovJ. PetlenkovE. LevronY. 2022 Reinforcement Learning based MIMO Controller for Virtual Inertia Control in Isolated Microgrids 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe) 1 5 Search in Google Scholar

Du, Y., Zandi, H., Kotevska, O., Kurte, K., Munk, J., Amasyali, K., Mckee, E., & Li, F. (2021). Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning. Applied Energy, 281, 116117. DuY. ZandiH. KotevskaO. KurteK. MunkJ. AmasyaliK. MckeeE. LiF. 2021 Intelligent multi-zone residential HVAC control strategy based on deep reinforcement learning Applied Energy 281 116117 Search in Google Scholar

Ho, T, Tat, T, Ngo, H., Nguyen, T, Bui, D., Le, T., Le, V, & Huynh, L. (2023). Applying DDPG Algorithm to Swing-Up and Balance Control for a Double Inverted Pendulum on a Cart. Robotica & Management. HoT TatT NgoH. NguyenT BuiD. LeT. LeV HuynhL. 2023 Applying DDPG Algorithm to Swing-Up and Balance Control for a Double Inverted Pendulum on a Cart Robotica & Management Search in Google Scholar

Wang, Q-G., Zou, B., Lee, TH., Bi, Q. (1997). Auto-tuning of multivariable PID controllers from decentralized relay feedback. Automatica, 33(3):319–30. WangQ-G. ZouB. LeeTH. BiQ. 1997 Auto-tuning of multivariable PID controllers from decentralized relay feedback Automatica 33 3 319 30 Search in Google Scholar

A. Alharin, T.-N. Doan, and M. Sartipi, “Reinforcement Learning Interpretation Methods: A Survey,” IEEE Access, vol. 8, pp. 171058–171077, 2020. AlharinA. DoanT.-N. SartipiM. “Reinforcement Learning Interpretation Methods: A Survey,” IEEE Access 8 171058 171077 2020 Search in Google Scholar

T. M. Luu and C. D. Yoo, “Hindsight Goal Ranking on Replay Buffer for Sparse Reward Environment,” IEEE Access, vol. 9, pp. 51996–52007, Mar. 2021. LuuT. M. YooC. D. “Hindsight Goal Ranking on Replay Buffer for Sparse Reward Environment,” IEEE Access 9 51996 52007 Mar. 2021 Search in Google Scholar

Kiran, M. and Ozyildirim, M. Hyperparameter Tuning for Deep Reinforcement Learning Applications. arXiv: 2201.11182. (2022). KiranM. OzyildirimM. Hyperparameter Tuning for Deep Reinforcement Learning Applications arXiv: 2201.11182. 2022 Search in Google Scholar

Felten, F, Gareev, D, Talbi, E.G. and Danoy, G. Hyperparameter Optimization for Multi-Objective Reinforcement Learning. arXiv: 2310.16487.(2023). FeltenF GareevD TalbiE.G. DanoyG. Hyperparameter Optimization for Multi-Objective Reinforcement Learning arXiv: 2310.16487. 2023 Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Inżynieria, Wstępy i przeglądy, Inżynieria, inne