Otwarty dostęp

Machine Learning-based GIS Model for 2D and 3D Vehicular Noise Modelling in a Data-scarce Environment

, , , ,  oraz   
06 sie 2024

Zacytuj
Pobierz okładkę

Vigar, G. (2013). The politics of mobility: Transport planning, the environment and public policy. Routledge. VigarG. 2013 The politics of mobility: Transport planning, the environment and public policy Routledge Search in Google Scholar

Pink, S., Lacey, J., Harvey, L., Sumartojo, S., Duque, M., & Moore, S. (2019). Recycling traffic noise: transforming sonic automobilities for revalue and wellbeing. Mobilities, 14(2), 233–249. PinkS. LaceyJ. HarveyL. SumartojoS. DuqueM. MooreS. 2019 Recycling traffic noise: transforming sonic automobilities for revalue and wellbeing Mobilities 14 2 233 249 Search in Google Scholar

Morley, D. W., De Hoogh, K., Fecht, D., Fabbri, F., Bell, M., Goodman, P. S., Elliott, P., Hodgson, S., Hansell, A. L. & Gulliver, J. (2015). International scale implementation of the CNOSSOS-EU road traffic noise prediction model for epidemiological studies. Environmental pollution, 206, 332–341. MorleyD. W. De HooghK. FechtD. FabbriF. BellM. GoodmanP. S. ElliottP. HodgsonS. HansellA. L. GulliverJ. 2015 International scale implementation of the CNOSSOS-EU road traffic noise prediction model for epidemiological studies Environmental pollution 206 332 341 Search in Google Scholar

Babisch, W. (2008). Road traffic noise and cardiovascular risk. Noise and Health, 10(38), 27. BabischW. 2008 Road traffic noise and cardiovascular risk Noise and Health 10 38 27 Search in Google Scholar

Cervero, R. (1998). The transit metropolis: a global inquiry. Island press. CerveroR. 1998 The transit metropolis: a global inquiry Island press Search in Google Scholar

Dahl, R. (2005). Heavy traffic ahead: car culture accelerates. DahlR. 2005 Heavy traffic ahead: car culture accelerates Search in Google Scholar

Johansson, O., Pearce, D., & Maddison, D. (2014). Blueprint 5: True costs of road transport. Routledge. JohanssonO. PearceD. MaddisonD. 2014 Blueprint 5: True costs of road transport Routledge Search in Google Scholar

Hurtley, C. (Ed.). (2009). Night noise guidelines for Europe. WHO Regional Office Europe. HurtleyC. (Ed.). 2009 Night noise guidelines for Europe WHO Regional Office Europe Search in Google Scholar

Ahmed, A. A., & Pradhan, B. (2019). Vehicular traffic noise prediction and propagation modelling using neural networks and geospatial information system. Environmental monitoring and assessment, 191(3), 190. AhmedA. A. PradhanB. 2019 Vehicular traffic noise prediction and propagation modelling using neural networks and geospatial information system Environmental monitoring and assessment 191 3 190 Search in Google Scholar

Morley, D. W., & Gulliver, J. (2016). Methods to improve traffic flow and noise exposure estimation on minor roads. Environmental pollution, 216, 746–754. MorleyD. W. GulliverJ. 2016 Methods to improve traffic flow and noise exposure estimation on minor roads Environmental pollution 216 746 754 Search in Google Scholar

Steele, C. (2001). A critical review of some traffic noise prediction models. Applied acoustics, 62(3), 271–287. SteeleC. 2001 A critical review of some traffic noise prediction models Applied acoustics 62 3 271 287 Search in Google Scholar

Suárez, E., & Barros, J. L. (2014). Traffic noise mapping of the city of Santiago de Chile. Science of the total environment, 466, 539–546. SuárezE. BarrosJ. L. 2014 Traffic noise mapping of the city of Santiago de Chile Science of the total environment 466 539 546 Search in Google Scholar

Torija, A. J., & Ruiz, D. P. (2012). Using recorded sound spectra profile as input data for real-time short-term urban road-traffic-flow estimation. Science of the total environment, 435, 270–279. TorijaA. J. RuizD. P. 2012 Using recorded sound spectra profile as input data for real-time short-term urban road-traffic-flow estimation Science of the total environment 435 270 279 Search in Google Scholar

Tang, U. W., & Wang, Z. S. (2007). Influences of urban forms on traffic-induced noise and air pollution: Results from a modelling system. Environmental Modelling & Software, 22(12), 1750–1764. TangU. W. WangZ. S. 2007 Influences of urban forms on traffic-induced noise and air pollution: Results from a modelling system Environmental Modelling & Software 22 12 1750 1764 Search in Google Scholar

Tomczak, M. (1998). Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approach. Journal of Geographic Information and Decision Analysis, 2(2), 18–30. TomczakM. 1998 Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approach Journal of Geographic Information and Decision Analysis 2 2 18 30 Search in Google Scholar

Tomić, J., Bogojević, N., Pljakić, M., & Šumarac-Pavlović, D. (2016). Assessment of traffic noise levels in urban areas using different soft computing techniques. The Journal of the Acoustical Society of America, 140(4), EL340–EL345. TomićJ. BogojevićN. PljakićM. Šumarac-PavlovićD. 2016 Assessment of traffic noise levels in urban areas using different soft computing techniques The Journal of the Acoustical Society of America 140 4 EL340 EL345 Search in Google Scholar

Andersen, Z. J., Jørgensen, J. T., Elsborg, L., Lophaven, S. N., Backalarz, C., Laursen, J. E., … & Lynge, E. (2018). Long-term exposure to road traffic noise and incidence of breast cancer: a cohort study. Breast Cancer Research, 20(1), 119. AndersenZ. J. JørgensenJ. T. ElsborgL. LophavenS. N. BackalarzC. LaursenJ. E. LyngeE. 2018 Long-term exposure to road traffic noise and incidence of breast cancer: a cohort study Breast Cancer Research 20 1 119 Search in Google Scholar

Halim, H., Abdullah, R., Nor, M. M., Aziz, H. A., & Rahman, N. A. (2017). Comparison between measured traffic noise in Klang Valley, Malaysia and existing prediction models. Engineering Heritage Journal, 1(2), 10–14. HalimH. AbdullahR. NorM. M. AzizH. A. RahmanN. A. 2017 Comparison between measured traffic noise in Klang Valley, Malaysia and existing prediction models Engineering Heritage Journal 1 2 10 14 Search in Google Scholar

Yamamoto, K., Yoshihisa, K., Miyake, T., Tajika, T., & Tachibana, H. (2018). Road traffic noise prediction model “ASJ RTN-Model 2003” proposed by the Acoustical Society of Japan-Part 3: Calculation model of sound propagation. In the Proceedings of the 18th International Congress on Acoustics (ICA) (pp. 4–9). YamamotoK. YoshihisaK. MiyakeT. TajikaT. TachibanaH. 2018 Road traffic noise prediction model “ASJ RTN-Model 2003” proposed by the Acoustical Society of Japan-Part 3: Calculation model of sound propagation In the Proceedings of the 18th International Congress on Acoustics (ICA) 4 9 Search in Google Scholar

Gulliver, J., Morley, D., Vienneau, D., Fabbri, F., Bell, M., Goodman, P., … & Fecht, D. (2015). Development of an open-source road traffic noise model for exposure assessment. Environmental Modelling & Software, 74, 183–193. GulliverJ. MorleyD. VienneauD. FabbriF. BellM. GoodmanP. FechtD. 2015 Development of an open-source road traffic noise model for exposure assessment Environmental Modelling & Software 74 183 193 Search in Google Scholar

Sakamoto, S. (2015). Road traffic noise prediction model “ASJ RTN-Model 2013”: Report of the Research Committee on Road Traffic Noise. Acoustical Science and Technology, 36(2), 49–108. SakamotoS. 2015 Road traffic noise prediction model “ASJ RTN-Model 2013”: Report of the Research Committee on Road Traffic Noise Acoustical Science and Technology 36 2 49 108 Search in Google Scholar

Steele, C. (2001). A critical review of some traffic noise prediction models. Applied acoustics, 62(3), 271–287. SteeleC. 2001 A critical review of some traffic noise prediction models Applied acoustics 62 3 271 287 Search in Google Scholar

Liu, B., Li, K., Huang, D. S., & Chou, K. C. (2018). iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics, 34(22), 3835–3842. LiuB. LiK. HuangD. S. ChouK. C. 2018 iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach Bioinformatics 34 22 3835 3842 Search in Google Scholar

Zhang, C., & Ma, Y. (Eds.). (2012). Ensemble machine learning: methods and applications. Springer Science & Business Media. ZhangC. MaY. (Eds.). 2012 Ensemble machine learning: methods and applications Springer Science & Business Media Search in Google Scholar

Polikar, R. (2012). Ensemble learning. In Ensemble machine learning (pp. 1–34). Springer, Boston, MA. PolikarR. 2012 Ensemble learning. In Ensemble machine learning 1 34 Springer Boston, MA Search in Google Scholar

Kulkarni, S., & Kelkar, V. (2014, April). Classification of multispectral satellite images using ensemble techniques of bagging, boosting and adaboost. In 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA) (pp. 253–258). IEEE. KulkarniS. KelkarV. 2014 April Classification of multispectral satellite images using ensemble techniques of bagging, boosting and adaboost In 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA) 253 258 IEEE Search in Google Scholar

Sengur, A. (2012). Support vector machine ensembles for intelligent diagnosis of valvular heart disease. Journal of medical systems, 36(4), 2649–2655. SengurA. 2012 Support vector machine ensembles for intelligent diagnosis of valvular heart disease Journal of medical systems 36 4 2649 2655 Search in Google Scholar

Ghimire, B., Rogan, J., Galiano, V. R., Panday, P., & Neeti, N. (2012). An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA. GIScience & Remote Sensing, 49(5), 623–643. GhimireB. RoganJ. GalianoV. R. PandayP. NeetiN. 2012 An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA GIScience & Remote Sensing 49 5 623 643 Search in Google Scholar

Deng, Y., Cheng, J. C., & Anumba, C. (2016). A framework for 3D traffic noise mapping using data from BIM and GIS integration. Structure and Infrastructure Engineering, 12(10), 1267–1280. DengY. ChengJ. C. AnumbaC. 2016 A framework for 3D traffic noise mapping using data from BIM and GIS integration Structure and Infrastructure Engineering 12 10 1267 1280 Search in Google Scholar

Stoter, J., De Kluijver, H., & Kurakula, V. (2008). 3D noise mapping in urban areas. International Journal of Geographical Information Science, 22(8), 907–924. StoterJ. De KluijverH. KurakulaV. 2008 3D noise mapping in urban areas International Journal of Geographical Information Science 22 8 907 924 Search in Google Scholar

Law, C. W., Lee, C. K., Lui, A. S. W., Yeung, M. K. L., & Lam, K. C. (2011). Advancement of three-dimensional noise mapping in Hong Kong. Applied Acoustics, 72(8), 534–543. LawC. W. LeeC. K. LuiA. S. W. YeungM. K. L. LamK. C. 2011 Advancement of three-dimensional noise mapping in Hong Kong Applied Acoustics 72 8 534 543 Search in Google Scholar

Alam, P., Ahmad, K., Afsar, S. S., & Akhtar, N. (2020). 3D noise mapping for preselected locations of urban area with and without noise barriers: A case study of Delhi, India. Noise Mapping, 7(1), 74–83. AlamP. AhmadK. AfsarS. S. AkhtarN. 2020 3D noise mapping for preselected locations of urban area with and without noise barriers: A case study of Delhi, India Noise Mapping 7 1 74 83 Search in Google Scholar

Zhao, W. J., Liu, E. X., Poh, H. J., Wang, B., Gao, S. P., Png, C. E., Li KW & Chong, S. H. (2017). 3D traffic noise mapping using unstructured surface mesh representation of buildings and roads. Applied Acoustics, 127, 297–304. ZhaoW. J. LiuE. X. PohH. J. WangB. GaoS. P. PngC. E. LiKW ChongS. H. 2017 3D traffic noise mapping using unstructured surface mesh representation of buildings and roads Applied Acoustics 127 297 304 Search in Google Scholar

Kurakula, V. K., & Kuffer, M. (2008). 3D noise modeling for urban environmental planning and management. na. KurakulaV. K. KufferM. 2008 3D noise modeling for urban environmental planning and management na Search in Google Scholar

Alam, P., Ahmad, K., Afsar, S. S., & Akhtar, N. (2020). Noise monitoring, mapping, and modelling studies–a review. Journal of Ecological Engineering, 21(4). AlamP. AhmadK. AfsarS. S. AkhtarN. 2020 Noise monitoring, mapping, and modelling studies–a review Journal of Ecological Engineering 21 4 Search in Google Scholar

Babisch, W., Beule, B., Schust, M., Kersten, N., & Ising, H. (2005). Traffic noise and risk of myocardial infarction. Epidemiology, 33–40. BabischW. BeuleB. SchustM. KerstenN. IsingH. 2005 Traffic noise and risk of myocardial infarction Epidemiology 33 40 Search in Google Scholar

Bluhm, G. L., Berglind, N., Nordling, E., & Rosenlund, M. (2007). Road traffic noise and hypertension. Occupational and environmental medicine, 64(2), 122–126. BluhmG. L. BerglindN. NordlingE. RosenlundM. 2007 Road traffic noise and hypertension Occupational and environmental medicine 64 2 122 126 Search in Google Scholar

Pradhan, B., Azeez, O. S., Jena, R., Jung, H. S., & Ahmed, A. A. (2019). Traffic emission modelling using LiDAR derived parameters and integrated geospatial model. Korean Journal of Remote Sensing. PradhanB. AzeezO. S. JenaR. JungH. S. AhmedA. A. 2019 Traffic emission modelling using LiDAR derived parameters and integrated geospatial model Korean Journal of Remote Sensing Search in Google Scholar

Ahmed, A. A., Pradhan, B., Chakraborty, S., & Alamri, A. (2021). Developing vehicular traffic noise prediction model through ensemble machine learning algorithms with GIS. Arabian Journal of Geosciences, 14(16), 1–14. AhmedA. A. PradhanB. ChakrabortyS. AlamriA. 2021 Developing vehicular traffic noise prediction model through ensemble machine learning algorithms with GIS Arabian Journal of Geosciences 14 16 1 14 Search in Google Scholar

Ahmed, A. A., Pradhan, B., Chakraborty, S., Alamri, A., & Lee, C. W. (2021). An Optimized Deep Neural Network Approach for Vehicular Traffic Noise Trend Modeling. IEEE Access, 9, 107375–107386. AhmedA. A. PradhanB. ChakrabortyS. AlamriA. LeeC. W. 2021 An Optimized Deep Neural Network Approach for Vehicular Traffic Noise Trend Modeling IEEE Access 9 107375 107386 Search in Google Scholar

Seong, J. C., Park, T. H., Ko, J. H., Chang, S. I., Kim, M., Holt, J. B., & Mehdi, M. R. (2011). Modeling of road traffic noise and estimated human exposure in Fulton County, Georgia, USA. Environment international, 37(8), 1336–1341. SeongJ. C. ParkT. H. KoJ. H. ChangS. I. KimM. HoltJ. B. MehdiM. R. 2011 Modeling of road traffic noise and estimated human exposure in Fulton County, Georgia, USA Environment international 37 8 1336 1341 Search in Google Scholar

Diallo, T. M., Collignan, B., & Allard, F. (2015). 2D Semi-empirical models for predicting the entry of soil gas pollutants into buildings. Building and Environment, 85, 1–16. DialloT. M. CollignanB. AllardF. 2015 2D Semi-empirical models for predicting the entry of soil gas pollutants into buildings Building and Environment 85 1 16 Search in Google Scholar

dos Santos, D. R., Cambier, P., Mallmann, F. J. K., Labanowski, J., Lamy, I., Tessier, D., & van Oort, F. (2013). Prospective modeling with Hydrus-2D of 50 years Zn and Pb movements in low and moderately metal-contaminated agricultural soils. Journal of contaminant hydrology, 145, 54–66. dos SantosD. R. CambierP. MallmannF. J. K. LabanowskiJ. LamyI. TessierD. van OortF. 2013 Prospective modeling with Hydrus-2D of 50 years Zn and Pb movements in low and moderately metal-contaminated agricultural soils Journal of contaminant hydrology 145 54 66 Search in Google Scholar

Duan, Q., Lee, J., Liu, Y., Chen, H., & Hu, H. (2016). Distribution of heavy metal pollution in surface soil samples in China: a graphical review. Bulletin of environmental contamination and toxicology, 97(3), 303–309. DuanQ. LeeJ. LiuY. ChenH. HuH. 2016 Distribution of heavy metal pollution in surface soil samples in China: a graphical review Bulletin of environmental contamination and toxicology 97 3 303 309 Search in Google Scholar

Butler, D. (2004). Noise management: Sound and vision. Nature, 427(6974), 480–482. ButlerD. 2004 Noise management: Sound and vision Nature 427 6974 480 482 Search in Google Scholar

Law, C. W., Lee, C. K., Lui, A. S. W., Yeung, M. K. L., & Lam, K. C. (2011). Advancement of three-dimensional noise mapping in Hong Kong. Applied Acoustics, 72(8), 534–543. LawC. W. LeeC. K. LuiA. S. W. YeungM. K. L. LamK. C. 2011 Advancement of three-dimensional noise mapping in Hong Kong Applied Acoustics 72 8 534 543 Search in Google Scholar

ISO, I. (1996). 9613-2-Acoustics. Attenuation of sound during propagation outdoors. Part, 2. ISOI. 1996 9613-2-Acoustics. Attenuation of sound during propagation outdoors. Part, 2 Search in Google Scholar

DoT, U. K. (1988). Calculation of road traffic noise. DoT, U. K. 1988 Calculation of road traffic noise Search in Google Scholar

Kurakula, V., Skidmore, A., Kluijver, H., Stoter, J., Dabrowska Zielinska, K., & Kuffer, M. (2007, March). A GIS based approach for 3D noise modelling using 3D city models. Enschede, The Netherlands: ITC. KurakulaV. SkidmoreA. KluijverH. StoterJ. Dabrowska ZielinskaK. KufferM. 2007 March A GIS based approach for 3D noise modelling using 3D city models Enschede, The Netherlands ITC Search in Google Scholar

May, R., Dandy, G., & Maier, H. (2011). Review of input variable selection methods for artificial neural networks. Artificial neural networks-methodological advances and biomedical applications, 10, 16004. MayR. DandyG. MaierH. 2011 Review of input variable selection methods for artificial neural networks Artificial neural networks-methodological advances and biomedical applications 10 16004 Search in Google Scholar

Iniesta, R., Stahl, D., & McGuffin, P. (2016). Machine learning, statistical learning and the future of biological research in psychiatry. Psychological medicine, 46(12), 2455–2465. IniestaR. StahlD. McGuffinP. 2016 Machine learning, statistical learning and the future of biological research in psychiatry Psychological medicine 46 12 2455 2465 Search in Google Scholar

Goyal, M. K., Bharti, B., Quilty, J., Adamowski, J., & Pandey, A. (2014). Modeling of daily pan evaporation in sub-tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert systems with applications, 41(11), 5267–5276. GoyalM. K. BhartiB. QuiltyJ. AdamowskiJ. PandeyA. 2014 Modeling of daily pan evaporation in sub-tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS Expert systems with applications 41 11 5267 5276 Search in Google Scholar

Kang, J., Schwartz, R., Flickinger, J., & Beriwal, S. (2015). Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective. International Journal of Radiation Oncology* Biology* Physics, 93(5), 1127–1135. KangJ. SchwartzR. FlickingerJ. BeriwalS. 2015 Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective International Journal of Radiation Oncology* Biology* Physics 93 5 1127 1135 Search in Google Scholar

Akhter, M. N., Mekhilef, S., Mokhlis, H., & Mohamed Shah, N. (2019). Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renewable Power Generation, 13(7), 1009–1023. AkhterM. N. MekhilefS. MokhlisH. Mohamed ShahN. 2019 Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques IET Renewable Power Generation 13 7 1009 1023 Search in Google Scholar

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university press. BishopC. M. 1995 Neural networks for pattern recognition Oxford university press Search in Google Scholar

Hill, D. J., & Minsker, B. S. (2010). Anomaly detection in streaming environmental sensor data: A data-driven modeling approach. Environmental Modelling & Software, 25(9), 1014–1022. HillD. J. MinskerB. S. 2010 Anomaly detection in streaming environmental sensor data: A data-driven modeling approach Environmental Modelling & Software 25 9 1014 1022 Search in Google Scholar

Baczynski, D., & Parol, M. (2004). Influence of artificial neural network structure on quality of short-term electric energy consumption forecast. IEE Proceedings-Generation, Transmission and Distribution, 151(2), 241–245. BaczynskiD. ParolM. 2004 Influence of artificial neural network structure on quality of short-term electric energy consumption forecast IEE Proceedings-Generation, Transmission and Distribution 151 2 241 245 Search in Google Scholar

Yang, G. Y. (1996). Geological mapping from multi-source data using neural networks. YangG. Y. 1996 Geological mapping from multi-source data using neural networks Search in Google Scholar

Caruana, R., & Niculescu-Mizil, A. (2006, June). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning (pp. 161–168). CaruanaR. Niculescu-MizilA. 2006 June An empirical comparison of supervised learning algorithms In Proceedings of the 23rd international conference on Machine learning 161 168 Search in Google Scholar

Xu, B., Ye, Y., & Nie, L. (2012, June). An improved random forest classifier for image classification. In 2012 IEEE International Conference on Information and Automation (pp. 795–800). IEEE. XuB. YeY. NieL. 2012 June An improved random forest classifier for image classification In 2012 IEEE International Conference on Information and Automation 795 800 IEEE Search in Google Scholar

Kulkarni, A. D., & Lowe, B. (2016). Random forest algorithm for land cover classification. KulkarniA. D. LoweB. 2016 Random forest algorithm for land cover classification Search in Google Scholar

Dubath, P., Rimoldini, L., Süveges, M., Blomme, J., López, M., Sarro, L. M., Sarro LM, De Ridder J, Cuypers J, Guy L, Lecoeur I, Nienartowicz K & Eyer, L. (2011). Random forest automated supervised classification of Hipparcos periodic variable stars. Monthly Notices of the Royal Astronomical Society, 414(3), 2602–2617. DubathP. RimoldiniL. SüvegesM. BlommeJ. LópezM. SarroL. M. SarroLM De RidderJ CuypersJ GuyL LecoeurI NienartowiczK EyerL. 2011 Random forest automated supervised classification of Hipparcos periodic variable stars Monthly Notices of the Royal Astronomical Society 414 3 2602 2617 Search in Google Scholar

VijiyaKumar, K., Lavanya, B., Nirmala, I., & Caroline, S. S. (2019, March). Random forest algorithm for the prediction of diabetes. In 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN) (pp. 1–5). IEEE. VijiyaKumarK. LavanyaB. NirmalaI. CarolineS. S. 2019 March Random forest algorithm for the prediction of diabetes In 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN) 1 5 IEEE Search in Google Scholar

Ranković, V., Grujović, N., Divac, D., & Milivojević, N. (2014). Development of support vector regression identification model for prediction of dam structural behaviour. Structural Safety, 48, 33–39. RankovićV. GrujovićN. DivacD. MilivojevićN. 2014 Development of support vector regression identification model for prediction of dam structural behaviour Structural Safety 48 33 39 Search in Google Scholar

Hong, X., Mitchell, R. J., Chen, S., Harris, C. J., Li, K., & Irwin, G. W. (2008). Model selection approaches for non-linear system identification: a review. International journal of systems science, 39(10), 925–946. HongX. MitchellR. J. ChenS. HarrisC. J. LiK. IrwinG. W. 2008 Model selection approaches for non-linear system identification: a review International journal of systems science 39 10 925 946 Search in Google Scholar

Adulaimi, A. A. A., Pradhan, B., Chakraborty, S., & Alamri, A. (2021). Traffic Noise Modelling Using Land Use Regression Model Based on Machine Learning, Statistical Regression and GIS. Energies, 14(16), 5095. AdulaimiA. A. A. PradhanB. ChakrabortyS. AlamriA. 2021 Traffic Noise Modelling Using Land Use Regression Model Based on Machine Learning, Statistical Regression and GIS Energies 14 16 5095 Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Inżynieria, Wstępy i przeglądy, Inżynieria, inne