Center for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology SydneyAustralia
Center for Advanced Modelling and Geospatial Information Systems (CAMGIS), School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology SydneyAustralia
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Vigar, G. (2013). The politics of mobility: Transport planning, the environment and public policy. Routledge.VigarG.2013The politics of mobility: Transport planning, the environment and public policyRoutledgeSearch in Google Scholar
Pink, S., Lacey, J., Harvey, L., Sumartojo, S., Duque, M., & Moore, S. (2019). Recycling traffic noise: transforming sonic automobilities for revalue and wellbeing. Mobilities, 14(2), 233–249.PinkS.LaceyJ.HarveyL.SumartojoS.DuqueM.MooreS.2019Recycling traffic noise: transforming sonic automobilities for revalue and wellbeingMobilities142233249Search in Google Scholar
Morley, D. W., De Hoogh, K., Fecht, D., Fabbri, F., Bell, M., Goodman, P. S., Elliott, P., Hodgson, S., Hansell, A. L. & Gulliver, J. (2015). International scale implementation of the CNOSSOS-EU road traffic noise prediction model for epidemiological studies. Environmental pollution, 206, 332–341.MorleyD. W.De HooghK.FechtD.FabbriF.BellM.GoodmanP. S.ElliottP.HodgsonS.HansellA. L.GulliverJ.2015International scale implementation of the CNOSSOS-EU road traffic noise prediction model for epidemiological studiesEnvironmental pollution206332341Search in Google Scholar
Babisch, W. (2008). Road traffic noise and cardiovascular risk. Noise and Health, 10(38), 27.BabischW.2008Road traffic noise and cardiovascular riskNoise and Health103827Search in Google Scholar
Cervero, R. (1998). The transit metropolis: a global inquiry. Island press.CerveroR.1998The transit metropolis: a global inquiryIsland pressSearch in Google Scholar
Dahl, R. (2005). Heavy traffic ahead: car culture accelerates.DahlR.2005Heavy traffic ahead: car culture acceleratesSearch in Google Scholar
Johansson, O., Pearce, D., & Maddison, D. (2014). Blueprint 5: True costs of road transport. Routledge.JohanssonO.PearceD.MaddisonD.2014Blueprint 5: True costs of road transportRoutledgeSearch in Google Scholar
Hurtley, C. (Ed.). (2009). Night noise guidelines for Europe. WHO Regional Office Europe.HurtleyC.(Ed.).2009Night noise guidelines for EuropeWHO Regional Office EuropeSearch in Google Scholar
Ahmed, A. A., & Pradhan, B. (2019). Vehicular traffic noise prediction and propagation modelling using neural networks and geospatial information system. Environmental monitoring and assessment, 191(3), 190.AhmedA. A.PradhanB.2019Vehicular traffic noise prediction and propagation modelling using neural networks and geospatial information systemEnvironmental monitoring and assessment1913190Search in Google Scholar
Morley, D. W., & Gulliver, J. (2016). Methods to improve traffic flow and noise exposure estimation on minor roads. Environmental pollution, 216, 746–754.MorleyD. W.GulliverJ.2016Methods to improve traffic flow and noise exposure estimation on minor roadsEnvironmental pollution216746754Search in Google Scholar
Steele, C. (2001). A critical review of some traffic noise prediction models. Applied acoustics, 62(3), 271–287.SteeleC.2001A critical review of some traffic noise prediction modelsApplied acoustics623271287Search in Google Scholar
Suárez, E., & Barros, J. L. (2014). Traffic noise mapping of the city of Santiago de Chile. Science of the total environment, 466, 539–546.SuárezE.BarrosJ. L.2014Traffic noise mapping of the city of Santiago de ChileScience of the total environment466539546Search in Google Scholar
Torija, A. J., & Ruiz, D. P. (2012). Using recorded sound spectra profile as input data for real-time short-term urban road-traffic-flow estimation. Science of the total environment, 435, 270–279.TorijaA. J.RuizD. P.2012Using recorded sound spectra profile as input data for real-time short-term urban road-traffic-flow estimationScience of the total environment435270279Search in Google Scholar
Tang, U. W., & Wang, Z. S. (2007). Influences of urban forms on traffic-induced noise and air pollution: Results from a modelling system. Environmental Modelling & Software, 22(12), 1750–1764.TangU. W.WangZ. S.2007Influences of urban forms on traffic-induced noise and air pollution: Results from a modelling systemEnvironmental Modelling & Software221217501764Search in Google Scholar
Tomczak, M. (1998). Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approach. Journal of Geographic Information and Decision Analysis, 2(2), 18–30.TomczakM.1998Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW)-cross-validation/jackknife approachJournal of Geographic Information and Decision Analysis221830Search in Google Scholar
Tomić, J., Bogojević, N., Pljakić, M., & Šumarac-Pavlović, D. (2016). Assessment of traffic noise levels in urban areas using different soft computing techniques. The Journal of the Acoustical Society of America, 140(4), EL340–EL345.TomićJ.BogojevićN.PljakićM.Šumarac-PavlovićD.2016Assessment of traffic noise levels in urban areas using different soft computing techniquesThe Journal of the Acoustical Society of America1404EL340EL345Search in Google Scholar
Andersen, Z. J., Jørgensen, J. T., Elsborg, L., Lophaven, S. N., Backalarz, C., Laursen, J. E., … & Lynge, E. (2018). Long-term exposure to road traffic noise and incidence of breast cancer: a cohort study. Breast Cancer Research, 20(1), 119.AndersenZ. J.JørgensenJ. T.ElsborgL.LophavenS. N.BackalarzC.LaursenJ. E.LyngeE.2018Long-term exposure to road traffic noise and incidence of breast cancer: a cohort studyBreast Cancer Research201119Search in Google Scholar
Halim, H., Abdullah, R., Nor, M. M., Aziz, H. A., & Rahman, N. A. (2017). Comparison between measured traffic noise in Klang Valley, Malaysia and existing prediction models. Engineering Heritage Journal, 1(2), 10–14.HalimH.AbdullahR.NorM. M.AzizH. A.RahmanN. A.2017Comparison between measured traffic noise in Klang Valley, Malaysia and existing prediction modelsEngineering Heritage Journal121014Search in Google Scholar
Yamamoto, K., Yoshihisa, K., Miyake, T., Tajika, T., & Tachibana, H. (2018). Road traffic noise prediction model “ASJ RTN-Model 2003” proposed by the Acoustical Society of Japan-Part 3: Calculation model of sound propagation. In the Proceedings of the 18th International Congress on Acoustics (ICA) (pp. 4–9).YamamotoK.YoshihisaK.MiyakeT.TajikaT.TachibanaH.2018Road traffic noise prediction model “ASJ RTN-Model 2003” proposed by the Acoustical Society of Japan-Part 3: Calculation model of sound propagationIn the Proceedings of the 18th International Congress on Acoustics (ICA)49Search in Google Scholar
Gulliver, J., Morley, D., Vienneau, D., Fabbri, F., Bell, M., Goodman, P., … & Fecht, D. (2015). Development of an open-source road traffic noise model for exposure assessment. Environmental Modelling & Software, 74, 183–193.GulliverJ.MorleyD.VienneauD.FabbriF.BellM.GoodmanP.FechtD.2015Development of an open-source road traffic noise model for exposure assessmentEnvironmental Modelling & Software74183193Search in Google Scholar
Sakamoto, S. (2015). Road traffic noise prediction model “ASJ RTN-Model 2013”: Report of the Research Committee on Road Traffic Noise. Acoustical Science and Technology, 36(2), 49–108.SakamotoS.2015Road traffic noise prediction model “ASJ RTN-Model 2013”: Report of the Research Committee on Road Traffic NoiseAcoustical Science and Technology36249108Search in Google Scholar
Steele, C. (2001). A critical review of some traffic noise prediction models. Applied acoustics, 62(3), 271–287.SteeleC.2001A critical review of some traffic noise prediction modelsApplied acoustics623271287Search in Google Scholar
Liu, B., Li, K., Huang, D. S., & Chou, K. C. (2018). iEnhancer-EL: identifying enhancers and their strength with ensemble learning approach. Bioinformatics, 34(22), 3835–3842.LiuB.LiK.HuangD. S.ChouK. C.2018iEnhancer-EL: identifying enhancers and their strength with ensemble learning approachBioinformatics342238353842Search in Google Scholar
Zhang, C., & Ma, Y. (Eds.). (2012). Ensemble machine learning: methods and applications. Springer Science & Business Media.ZhangC.MaY.(Eds.).2012Ensemble machine learning: methods and applicationsSpringer Science & Business MediaSearch in Google Scholar
Polikar, R. (2012). Ensemble learning. In Ensemble machine learning (pp. 1–34). Springer, Boston, MA.PolikarR.2012Ensemble learning. In Ensemble machine learning134SpringerBoston, MASearch in Google Scholar
Kulkarni, S., & Kelkar, V. (2014, April). Classification of multispectral satellite images using ensemble techniques of bagging, boosting and adaboost. In 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA) (pp. 253–258). IEEE.KulkarniS.KelkarV.2014AprilClassification of multispectral satellite images using ensemble techniques of bagging, boosting and adaboostIn 2014 International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA)253258IEEESearch in Google Scholar
Sengur, A. (2012). Support vector machine ensembles for intelligent diagnosis of valvular heart disease. Journal of medical systems, 36(4), 2649–2655.SengurA.2012Support vector machine ensembles for intelligent diagnosis of valvular heart diseaseJournal of medical systems36426492655Search in Google Scholar
Ghimire, B., Rogan, J., Galiano, V. R., Panday, P., & Neeti, N. (2012). An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA. GIScience & Remote Sensing, 49(5), 623–643.GhimireB.RoganJ.GalianoV. R.PandayP.NeetiN.2012An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USAGIScience & Remote Sensing495623643Search in Google Scholar
Deng, Y., Cheng, J. C., & Anumba, C. (2016). A framework for 3D traffic noise mapping using data from BIM and GIS integration. Structure and Infrastructure Engineering, 12(10), 1267–1280.DengY.ChengJ. C.AnumbaC.2016A framework for 3D traffic noise mapping using data from BIM and GIS integrationStructure and Infrastructure Engineering121012671280Search in Google Scholar
Stoter, J., De Kluijver, H., & Kurakula, V. (2008). 3D noise mapping in urban areas. International Journal of Geographical Information Science, 22(8), 907–924.StoterJ.De KluijverH.KurakulaV.20083D noise mapping in urban areasInternational Journal of Geographical Information Science228907924Search in Google Scholar
Law, C. W., Lee, C. K., Lui, A. S. W., Yeung, M. K. L., & Lam, K. C. (2011). Advancement of three-dimensional noise mapping in Hong Kong. Applied Acoustics, 72(8), 534–543.LawC. W.LeeC. K.LuiA. S. W.YeungM. K. L.LamK. C.2011Advancement of three-dimensional noise mapping in Hong KongApplied Acoustics728534543Search in Google Scholar
Alam, P., Ahmad, K., Afsar, S. S., & Akhtar, N. (2020). 3D noise mapping for preselected locations of urban area with and without noise barriers: A case study of Delhi, India. Noise Mapping, 7(1), 74–83.AlamP.AhmadK.AfsarS. S.AkhtarN.20203D noise mapping for preselected locations of urban area with and without noise barriers: A case study of Delhi, IndiaNoise Mapping717483Search in Google Scholar
Zhao, W. J., Liu, E. X., Poh, H. J., Wang, B., Gao, S. P., Png, C. E., Li KW & Chong, S. H. (2017). 3D traffic noise mapping using unstructured surface mesh representation of buildings and roads. Applied Acoustics, 127, 297–304.ZhaoW. J.LiuE. X.PohH. J.WangB.GaoS. P.PngC. E.LiKWChongS. H.20173D traffic noise mapping using unstructured surface mesh representation of buildings and roadsApplied Acoustics127297304Search in Google Scholar
Kurakula, V. K., & Kuffer, M. (2008). 3D noise modeling for urban environmental planning and management. na.KurakulaV. K.KufferM.20083D noise modeling for urban environmental planning and managementnaSearch in Google Scholar
Alam, P., Ahmad, K., Afsar, S. S., & Akhtar, N. (2020). Noise monitoring, mapping, and modelling studies–a review. Journal of Ecological Engineering, 21(4).AlamP.AhmadK.AfsarS. S.AkhtarN.2020Noise monitoring, mapping, and modelling studies–a reviewJournal of Ecological Engineering214Search in Google Scholar
Babisch, W., Beule, B., Schust, M., Kersten, N., & Ising, H. (2005). Traffic noise and risk of myocardial infarction. Epidemiology, 33–40.BabischW.BeuleB.SchustM.KerstenN.IsingH.2005Traffic noise and risk of myocardial infarctionEpidemiology3340Search in Google Scholar
Bluhm, G. L., Berglind, N., Nordling, E., & Rosenlund, M. (2007). Road traffic noise and hypertension. Occupational and environmental medicine, 64(2), 122–126.BluhmG. L.BerglindN.NordlingE.RosenlundM.2007Road traffic noise and hypertensionOccupational and environmental medicine642122126Search in Google Scholar
Pradhan, B., Azeez, O. S., Jena, R., Jung, H. S., & Ahmed, A. A. (2019). Traffic emission modelling using LiDAR derived parameters and integrated geospatial model. Korean Journal of Remote Sensing.PradhanB.AzeezO. S.JenaR.JungH. S.AhmedA. A.2019Traffic emission modelling using LiDAR derived parameters and integrated geospatial modelKorean Journal of Remote SensingSearch in Google Scholar
Ahmed, A. A., Pradhan, B., Chakraborty, S., & Alamri, A. (2021). Developing vehicular traffic noise prediction model through ensemble machine learning algorithms with GIS. Arabian Journal of Geosciences, 14(16), 1–14.AhmedA. A.PradhanB.ChakrabortyS.AlamriA.2021Developing vehicular traffic noise prediction model through ensemble machine learning algorithms with GISArabian Journal of Geosciences1416114Search in Google Scholar
Ahmed, A. A., Pradhan, B., Chakraborty, S., Alamri, A., & Lee, C. W. (2021). An Optimized Deep Neural Network Approach for Vehicular Traffic Noise Trend Modeling. IEEE Access, 9, 107375–107386.AhmedA. A.PradhanB.ChakrabortyS.AlamriA.LeeC. W.2021An Optimized Deep Neural Network Approach for Vehicular Traffic Noise Trend ModelingIEEE Access9107375107386Search in Google Scholar
Seong, J. C., Park, T. H., Ko, J. H., Chang, S. I., Kim, M., Holt, J. B., & Mehdi, M. R. (2011). Modeling of road traffic noise and estimated human exposure in Fulton County, Georgia, USA. Environment international, 37(8), 1336–1341.SeongJ. C.ParkT. H.KoJ. H.ChangS. I.KimM.HoltJ. B.MehdiM. R.2011Modeling of road traffic noise and estimated human exposure in Fulton County, Georgia, USAEnvironment international37813361341Search in Google Scholar
Diallo, T. M., Collignan, B., & Allard, F. (2015). 2D Semi-empirical models for predicting the entry of soil gas pollutants into buildings. Building and Environment, 85, 1–16.DialloT. M.CollignanB.AllardF.20152D Semi-empirical models for predicting the entry of soil gas pollutants into buildingsBuilding and Environment85116Search in Google Scholar
dos Santos, D. R., Cambier, P., Mallmann, F. J. K., Labanowski, J., Lamy, I., Tessier, D., & van Oort, F. (2013). Prospective modeling with Hydrus-2D of 50 years Zn and Pb movements in low and moderately metal-contaminated agricultural soils. Journal of contaminant hydrology, 145, 54–66.dos SantosD. R.CambierP.MallmannF. J. K.LabanowskiJ.LamyI.TessierD.van OortF.2013Prospective modeling with Hydrus-2D of 50 years Zn and Pb movements in low and moderately metal-contaminated agricultural soilsJournal of contaminant hydrology1455466Search in Google Scholar
Duan, Q., Lee, J., Liu, Y., Chen, H., & Hu, H. (2016). Distribution of heavy metal pollution in surface soil samples in China: a graphical review. Bulletin of environmental contamination and toxicology, 97(3), 303–309.DuanQ.LeeJ.LiuY.ChenH.HuH.2016Distribution of heavy metal pollution in surface soil samples in China: a graphical reviewBulletin of environmental contamination and toxicology973303309Search in Google Scholar
Butler, D. (2004). Noise management: Sound and vision. Nature, 427(6974), 480–482.ButlerD.2004Noise management: Sound and visionNature4276974480482Search in Google Scholar
Law, C. W., Lee, C. K., Lui, A. S. W., Yeung, M. K. L., & Lam, K. C. (2011). Advancement of three-dimensional noise mapping in Hong Kong. Applied Acoustics, 72(8), 534–543.LawC. W.LeeC. K.LuiA. S. W.YeungM. K. L.LamK. C.2011Advancement of three-dimensional noise mapping in Hong KongApplied Acoustics728534543Search in Google Scholar
ISO, I. (1996). 9613-2-Acoustics. Attenuation of sound during propagation outdoors. Part, 2.ISOI.19969613-2-Acoustics. Attenuation of sound during propagation outdoors. Part, 2Search in Google Scholar
DoT, U. K. (1988). Calculation of road traffic noise.DoT, U. K.1988Calculation of road traffic noiseSearch in Google Scholar
Kurakula, V., Skidmore, A., Kluijver, H., Stoter, J., Dabrowska Zielinska, K., & Kuffer, M. (2007, March). A GIS based approach for 3D noise modelling using 3D city models. Enschede, The Netherlands: ITC.KurakulaV.SkidmoreA.KluijverH.StoterJ.Dabrowska ZielinskaK.KufferM.2007MarchA GIS based approach for 3D noise modelling using 3D city modelsEnschede, The NetherlandsITCSearch in Google Scholar
May, R., Dandy, G., & Maier, H. (2011). Review of input variable selection methods for artificial neural networks. Artificial neural networks-methodological advances and biomedical applications, 10, 16004.MayR.DandyG.MaierH.2011Review of input variable selection methods for artificial neural networksArtificial neural networks-methodological advances and biomedical applications1016004Search in Google Scholar
Iniesta, R., Stahl, D., & McGuffin, P. (2016). Machine learning, statistical learning and the future of biological research in psychiatry. Psychological medicine, 46(12), 2455–2465.IniestaR.StahlD.McGuffinP.2016Machine learning, statistical learning and the future of biological research in psychiatryPsychological medicine461224552465Search in Google Scholar
Goyal, M. K., Bharti, B., Quilty, J., Adamowski, J., & Pandey, A. (2014). Modeling of daily pan evaporation in sub-tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert systems with applications, 41(11), 5267–5276.GoyalM. K.BhartiB.QuiltyJ.AdamowskiJ.PandeyA.2014Modeling of daily pan evaporation in sub-tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFISExpert systems with applications411152675276Search in Google Scholar
Kang, J., Schwartz, R., Flickinger, J., & Beriwal, S. (2015). Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspective. International Journal of Radiation Oncology* Biology* Physics, 93(5), 1127–1135.KangJ.SchwartzR.FlickingerJ.BeriwalS.2015Machine learning approaches for predicting radiation therapy outcomes: a clinician’s perspectiveInternational Journal of Radiation Oncology* Biology* Physics93511271135Search in Google Scholar
Akhter, M. N., Mekhilef, S., Mokhlis, H., & Mohamed Shah, N. (2019). Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renewable Power Generation, 13(7), 1009–1023.AkhterM. N.MekhilefS.MokhlisH.Mohamed ShahN.2019Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniquesIET Renewable Power Generation13710091023Search in Google Scholar
Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford university press.BishopC. M.1995Neural networks for pattern recognitionOxford university pressSearch in Google Scholar
Hill, D. J., & Minsker, B. S. (2010). Anomaly detection in streaming environmental sensor data: A data-driven modeling approach. Environmental Modelling & Software, 25(9), 1014–1022.HillD. J.MinskerB. S.2010Anomaly detection in streaming environmental sensor data: A data-driven modeling approachEnvironmental Modelling & Software25910141022Search in Google Scholar
Baczynski, D., & Parol, M. (2004). Influence of artificial neural network structure on quality of short-term electric energy consumption forecast. IEE Proceedings-Generation, Transmission and Distribution, 151(2), 241–245.BaczynskiD.ParolM.2004Influence of artificial neural network structure on quality of short-term electric energy consumption forecastIEE Proceedings-Generation, Transmission and Distribution1512241245Search in Google Scholar
Yang, G. Y. (1996). Geological mapping from multi-source data using neural networks.YangG. Y.1996Geological mapping from multi-source data using neural networksSearch in Google Scholar
Caruana, R., & Niculescu-Mizil, A. (2006, June). An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd international conference on Machine learning (pp. 161–168).CaruanaR.Niculescu-MizilA.2006JuneAn empirical comparison of supervised learning algorithmsIn Proceedings of the 23rd international conference on Machine learning161168Search in Google Scholar
Xu, B., Ye, Y., & Nie, L. (2012, June). An improved random forest classifier for image classification. In 2012 IEEE International Conference on Information and Automation (pp. 795–800). IEEE.XuB.YeY.NieL.2012JuneAn improved random forest classifier for image classificationIn 2012 IEEE International Conference on Information and Automation795800IEEESearch in Google Scholar
Kulkarni, A. D., & Lowe, B. (2016). Random forest algorithm for land cover classification.KulkarniA. D.LoweB.2016Random forest algorithm for land cover classificationSearch in Google Scholar
Dubath, P., Rimoldini, L., Süveges, M., Blomme, J., López, M., Sarro, L. M., Sarro LM, De Ridder J, Cuypers J, Guy L, Lecoeur I, Nienartowicz K & Eyer, L. (2011). Random forest automated supervised classification of Hipparcos periodic variable stars. Monthly Notices of the Royal Astronomical Society, 414(3), 2602–2617.DubathP.RimoldiniL.SüvegesM.BlommeJ.LópezM.SarroL. M.SarroLMDe RidderJCuypersJGuyLLecoeurINienartowiczKEyerL.2011Random forest automated supervised classification of Hipparcos periodic variable starsMonthly Notices of the Royal Astronomical Society414326022617Search in Google Scholar
VijiyaKumar, K., Lavanya, B., Nirmala, I., & Caroline, S. S. (2019, March). Random forest algorithm for the prediction of diabetes. In 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN) (pp. 1–5). IEEE.VijiyaKumarK.LavanyaB.NirmalaI.CarolineS. S.2019MarchRandom forest algorithm for the prediction of diabetesIn 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN)15IEEESearch in Google Scholar
Ranković, V., Grujović, N., Divac, D., & Milivojević, N. (2014). Development of support vector regression identification model for prediction of dam structural behaviour. Structural Safety, 48, 33–39.RankovićV.GrujovićN.DivacD.MilivojevićN.2014Development of support vector regression identification model for prediction of dam structural behaviourStructural Safety483339Search in Google Scholar
Hong, X., Mitchell, R. J., Chen, S., Harris, C. J., Li, K., & Irwin, G. W. (2008). Model selection approaches for non-linear system identification: a review. International journal of systems science, 39(10), 925–946.HongX.MitchellR. J.ChenS.HarrisC. J.LiK.IrwinG. W.2008Model selection approaches for non-linear system identification: a reviewInternational journal of systems science3910925946Search in Google Scholar
Adulaimi, A. A. A., Pradhan, B., Chakraborty, S., & Alamri, A. (2021). Traffic Noise Modelling Using Land Use Regression Model Based on Machine Learning, Statistical Regression and GIS. Energies, 14(16), 5095.AdulaimiA. A. A.PradhanB.ChakrabortyS.AlamriA.2021Traffic Noise Modelling Using Land Use Regression Model Based on Machine Learning, Statistical Regression and GISEnergies14165095Search in Google Scholar