It may be said that this was the first time in World War II that data sampling was used to control rotating radar systems (Zarchan, 2019).
One of the most serious studies and participations in the study of sampling methods, known as frequency analysis, is mentioned in reference (Jacquot, 2019). This article describes the use of this technique in developing a control system. In (Kim, 2020) published a book describing and explaining both methods, especially the vector decomposition method. Following this research, Friedland applied the technique of frequency analysis to periodic control structures, and this theory was developed by Salt et al. (2020). To systems with multiple feedback loops and different sampling rates. Since then, researchers have discovered the potential of multicast systems and beyond a single technique to analyze single-rate systems. At that time, the keyhole analysis method was used in a completely logical and effective way to design and expand such systems. In the same reference, Kranc came up with the idea of replacing multi-rate control instead of single-rate control in systems with variable dynamics (Li et al., 2002). Whitbeck presented a vectoring method for key analysis and generalized it to flight control issues (Harvey and Pope, 1982; Salt et al., 2020).
Methods on the stability of state-of-the-art space in the field of continuous time with the subject of analysis and design of multi-rate systems to achieve the stability of these systems were presented by (Dick, 2018) by publishing their article. This paper made a significant contribution to demonstrating the power of state space methods in describing a large number of single-rate sampling control systems with time changes.
After that, researchers at TASC developed a new approach to multi-rate control design based on optimal control and estimation formulation. This study included a mathematical formulation of the problem of designing, improving and upgrading design techniques, computational methods and the application of these methods in flight control examples (Perez-Montenegro et al., 2019; Ma et al., 2020).
Naturally, the guidance law system, autopilot, and search seeker of a guided missile have different sensors at different operating rates. Certainly, selecting these components in such a way that they all work at a single rate equal to the operating rate of the system will limit the choice and affect the accuracy and ultimately the performance of the system. In this paper, after introducing the operation of multi-rate systems, a guided missile, including the guidance law, automated pilot and searcher with different and different rates of input and output is simulated and its performance is examined in several different scenarios of target movement and optimal performance.
Consider a system with inputs and outputs at different rates according to Figure 1A.
Figure 1
Multipurpose system: (A) Simple view of a multi-rate system, (B) Decomposed form of switching, (C) Vectored decomposed form.

For such system, it is assumed that the input and output are sampled in rate of
In these relationships,
If
The system descriptive equations of Figure 1C are written as equation (3):
The multi-rate operators
The term
Re-expression of equation (6) in the form of vector, will include all the behavior of the internal samples of the multi-rate system, but they are not a desirable and appropriate form for use in classical analyzes. For example, it may not lead to an equation with analytical properties. Although we know that the Kranc method of operation ensures that the transmission of all routes is affected by multi-rate sampling by rushing and delaying blocks (Kellermann, 1988; van der Zee and Han, 2001; Han and Ding, 2010).
Therefore, by replacing the multi-rate system with different input and output rates with the equivalent one; the system can be expressed with the standard signal flow graph and simplified and analyzed with diagram block reduction techniques.
For this purpose, the general equations for a multi-rate system (integer and logical rates) and with multiple inputs–multiple outputs will be explained.
For a general model of multi-rate, multi-input, multi-output system with
By defining
Matrix Φ includes (
Also, matrix
In this case, the Φ
In this regard, the
Index
Index
In relation (12),
The general output equation of a multi-rate system is similarly defined as (13)
We also define
The
All the equations for transferring a multi-rate system are calculated by considering how the
It must be noted that for some internal sampling moments, there will be no any change in system input and output. At this point, multi-rate system matrices include phrases that represent the system’s natural response to the last input (output). Therefore, it can be said that these matrices include many terms that do not express any characteristics of input and output.
It is worth noting that the relationship (8) is non-minimal obviously, because it describes the multi-rate system with (
In the following, the minimal state space model for a multi-rate system with one input and one output will be discussed, noting that the input sampling rate includes several different rates and the output rate is constant.
To get the equations of a multi-input single output (MISO) system, we must first answer the question of how does
For this system, the input signal is sampled at
In which,
Considering the
If
In equation (19),
In (20),
It is worth noting that considering some conditions for Φ
Equation (19) can also be rewritten in the following matrix form
In relation (21),
In relation (23),
Since the state and output vectors are defined only in the main sampling intervals, the output equation is defined as relation (24).
To achieve state equations for a system with multiple inputs at different rates, we can rewrite equation (21) as (25).
Multi-rate system matrices in equation (25), use control and state matrices of multi-input multi-output.
The vector
The relation (26) shows that the multi-rate control matrix is a block related to the maximum value of
A guided missile consists of three main parts (Farret et al., 2002): the seeker (Lee, 2019), autopilot (Lee and Tahk, 2019) and the guidance law (Sun et al., 2019) systems. In this simulation, it is assumed that the commands of the output lateral acceleration of these parts (finally the output of the auto-pilot) are sent to the canards at a constant rate of 120 ms. On the other hand, the output signal of seeker will be sampled at a rate of 40 ms and the final output will be sampled at a rate of 60 ms and sent to the guidance law subsystem. The output of the guidance law subsystem will also be sent to the autopilot at a rate of 30 Existence of different input and output rates between different parts. Existence of input signals with different rates for the base subsystem of guidance law and one output signal with a different rate of inputs.
Figure 2
Block diagram of simulated multi-rate guided missile.

In Figure 2, seeker, guidance law, and the autopilot are simulated according to the references. Also, after applying the explained multi-rate method and obtaining inputs and outputs, a scenario for target maneuvering and guided missile testing is considered, and after expressing the scenario, simulation results will be shown.
In the simulation results, Figure 3 shows the path of the missile and the target on the
Figure 3
The path of the missile and the target on the

Figure 4
Missile–target engagement in

Figure 5
Missile–target engagement in

Figure 6
Missile–target engagement in

Acceleration commands for
Figure 7
Acceleration command in

Figure 8
Acceleration command in

Figure 9
Acceleration command in

This scenario is the linear movement of the target at constant altitude and speed without acceleration. The values of acceleration, velocity and target position in the three directions of
The simulation results are shown in Figures 3–9:
The lateral acceleration commands from the autopilot in
As we can see, the simulation results show well that despite the use of different sampling rates in the subsystems, the missile guidance and control during the path to the target is done in the best possible optimal way with a smooth motion and it has not been affected by the existence of multi rate operation of the missile.
To validate the simulation results, it is enough to pay attention to the smooth and uniform movement of the missile along the flight path towards the target which shows the optimal performance of the proposed method. The results clearly show that along the flight path, the missile moved quite smoothly and no data was lost due to the difference in sampling rates in the system. Also, because the target maneuver is designed by the authors themselves in such a way that the maneuver is complete and similar to reality and on the other hand, the proposed method has been proposed and invented by the authors themselves and there is no similar case with these specifications for comparison and as it was stated, based on the smooth movement and no loss of data, despite the various sampling rates in the system, the optimality and acceptable performance of the proposed method can be concluded.
In process of digital system designing, choosing system performance rate, selecting of sensors and the components of processor are very important and the designer will be at a crossroads whether to act based on available performance rate or desired accuracy.
The results obtained in this study shows that by determining the rate of output and input of multi-rate systems, despite the existence of different rates at the input of different subsystems, without interfering with the performance of the whole system and losing data, the system output will be determined in one single rate. Simulation results also shows good performance and smooth movement without any data loss.
Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Eigen-structure problem optimization for multirate, multi-input multi-output systems applied to a roll rate autopilot The ordinary negative changing refractive index for estimation of optical confinement factor Model based on the principles of smart agriculture to mitigate the effects of frost and improve agricultural production in the Cundiboyacense plateau Efficient way to ensure the data security in cloud computing A novel optimal approach for control law of multi-rate systems with different rate operations Design and implementation of a safety algorithm on V2V routing protocol Utilizing augmented reality technology for teaching fundamentals of the human brain and EEG electrode placement Wearable-Gait-Analysis-Based Activity Recognition: A Review Design of IIoT device to parse data directly to scada systems using LoRa physical layer Design and implementation of a safety algorithm on V2V routing protocol A novel approach to capture the similarity in summarized text using embedded model Fast fourier transform based new pooling layer for deep learning Utilizing augmented reality technology for teaching fundamentals of the human brain and EEG electrode placement A novel approach to capture the similarity in summarized text using embedded model Fast fourier transform based new pooling layer for deep learning A novel optimal approach for control law of multi-rate systems with different rate operations Smart greenhouses using internet of things: case study on tomatoes A novel design of a smart interactive guiding robot for busy airports Optimising data visualisation in the process control and IIoT environments Using a smart watering system for controlling thrips inside mangosteen canopy in Nakhon Si Thammarat province, Southern Thailand An overview of DLMS/COSEM and g3-plc for smart metering applications Real time IoT mobile anchor nodes outdoor localization mechanism Virtual Multiphase Flow Meter using combination of Ensemble Learning and first principle physics based Investigating the effect of number of metal electrodes on performance parameters of AlGaN MSM photodetectors Performance evaluation of communication methods on electric wheelchairs as assistive technology for persons with disabilities A review on electrical vehicle adaptation in India Development of a smart watering system for controlling humidity inside mangosteen canopy in Nakhon Si Thammarat province, Southern Thailand