Otwarty dostęp

On the complex version of the Cahn–Hilliard–Oono type equation for long interactions phase separation


Zacytuj

Introduction

In this article, we are interested in the following boundary value problem: φt+εΔ2φ1εΔf(φ)+αφ=0,inΩ×[0,T], {{\partial \varphi} \over {\partial t}} + \varepsilon {\Delta^2}\varphi - {1 \over \varepsilon}\Delta f(\varphi) + \alpha \varphi = 0,\quad \quad {\kern 1pt} {\rm{in}}\;{\kern 1pt} \Omega \times [0,T], φν=Δφν=0,onΓ, {{\partial \varphi} \over {\partial \nu}} = {{\partial \Delta \varphi} \over {\partial \nu}} = 0,\quad \quad {\kern 1pt} {\rm{on}}\;{\kern 1pt} \Gamma, φ(x,0)=φ0(x),inΩ, \varphi (x,0) = {\varphi_0}(x),\quad \quad {\kern 1pt} {\rm{in}}\;{\kern 1pt} \Omega, in a bounded and regular domain Ω ⊂ ℝn, n ≤ 3, with boundary Γ and T > 0. The initial datum φ0(x) = φ0,1(x) + 0,2(x) satisfies the physical constraint |φ0| = 1, where the real part φ0,1(x) represents the initial concentration of the metallic components (the concentration of all phases is between 0 and 1), and the imaginary part φ0,2(x)=1φ0,12(x) {\varphi_{0,2}}(x) = \sqrt {1 - \varphi_{0,1}^2(x)} . Furthermore, φ = φ1 + 2 is the phase variable.

Equation (1) is the generalization of the original Cahn–Hilliard equation, which plays an essential role in material sciences as it describes the phase separation of binary systems in physics and chemistry. In 1958, Cahn and Hilliard [1,2,3,4] presented the equation (1) in the form of free energy, which later led to the development of the Cahn–Hilliard equation as a partial differential equation based on thermodynamic principles [5]. When a binary solution is cooled down sufficiently, the phase separation may occur in two ways: either by nucleation, in which case nuclei of the second phase appear randomly and grow, or the whole solution appears to nucleate at once, and then periodic or semi-periodic structures appear in the so-called spinodal decomposition. The pattern formation resulting from phase separation has been observed in alloys, glasses, and polymer solutions. The Cahn-Hilliard equation has many applications in material science and biology [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

The function f : ℂ → ℂ belongs to 𝒞2(ℂ, ℂ) and it satisfies the following standard dissipativity assumption: lim inf|z|Re(f(z))>0. \mathop {\lim \inf}\limits_{|z| \to \infty} Re(f'(z)) > 0. One typical choice for this function is f(z)=|z|2zz. f(z) = |z{|^2}z - z.

In this article, we prove the existence of a unique weak solution to the steady-state problem associated with (1)(2), using the method of fixed-point arguments. Subsequently, we consider a numerical scheme based on a finite element space discretization in space and Backward Euler discretization in time. After obtaining some error estimates for the semi-discrete solution, we demonstrate the convergence of the semi-discrete solution to the continuous one. Finally, we establish the stability of the Backward Euler scheme, which is the key to achieve the convergence of the fully discrete scheme to the continuous problem.

Our primary objective in this article is to propose a straightforward model for a grayscale multi-component phase separation that preserves the advantages of the phase separation achieved with the Cahn–Hilliard model. Specifically, it is computationally efficient and exhibits rapid convergence times. Notably, we can replicate the results of the two-phase separation by computing only two solutions (the real and imaginary parts of the order parameter), regardless of the number of phases in the initial multi-component metal.

Notations

Setting ϕ=1Vol(Ω)Ωϕ(x)dx, \langle \phi \rangle = {1 \over {{\bf{Vol}}(\Omega)}}\int_\Omega \phi (x){\kern 1pt} dx, we introduce the following spaces: H1(Ω)¯={τH1(Ω),τ,1H1,H1=0}, \overline {{H^{- 1}}(\Omega)} = \{\tau \in {H^{- 1}}(\Omega),{\langle \tau,1\rangle_{{H^{- 1}},{H^1}}} = 0\}, L(Ω)¯={τL2(Ω),τ=0}, \overline {L(\Omega)} = \{\tau \in {L^2}(\Omega),\langle \tau \rangle = 0\}, and H1(Ω)¯={τH1(Ω),τ=0}, \overline {{H^1}(\Omega)} = \{\tau \in {H^1}(\Omega),\langle \tau \rangle = 0\}, which are the H−1, L2 and H1 spaces with zero spatial average, respectively.

Well-posedness of the steady state problem

In this section, we prove the existence of a weak solution for the stationary problem associated with (1)(2): εΔ2φ1εΔf(φ)+αφ=0inΩ, \varepsilon {\Delta^2}\varphi - {1 \over \varepsilon}\Delta f(\varphi) + \alpha \varphi = 0\quad \quad {\rm{in}}\quad \quad \Omega, φν=Δφν=0onΓ. {{\partial \varphi} \over {\partial \nu}} = {{\partial \Delta \varphi} \over {\partial \nu}} = 0\quad \quad {\rm{on}}\quad \quad \Gamma.

We begin by integrating equation (5) across the domain Ω. Then, taking into account the boundary conditions, we find αφ=0. \langle \alpha \varphi \rangle = 0.

We now prove the existence of a solution to the variational problem of (5)(6) as follows.

We consider the fixed point operator T:L2(Ω)L2(Ω),τT(τ)=φ, T:{L^2}(\Omega) \to {L^2}(\Omega),\quad \quad \tau \to T(\tau) = \varphi, where τ is chosen from L2(Ω), and we consider the following equations: 1r(φτ)+εΔ2φ1εf(φ)+αφ=0inΩ, {1 \over r}(\varphi - \tau) + \varepsilon {\Delta^2}\varphi - {1 \over \varepsilon}f(\varphi) + \alpha \varphi = 0\quad {\rm{in}}\quad \Omega, φν=Δφν=0onΓ, {{\partial \varphi} \over {\partial \nu}} = {{\partial \Delta \varphi} \over {\partial \nu}} = 0\quad {\rm{on}}\quad \Gamma, where α is a positive constant. Integrating (8) over Ω, we find (7). Therefore, (8) can be rewritten as (1r+α)φ=1rτ. ({1 \over r} + \alpha)\langle \varphi \rangle = {1 \over r}\langle \tau \rangle. The variational formulation of (10) reads as follows: ε((φ,ρ))+1ε((f(φ),ρ))+α(((Δ)12(φ<φ>),(Δ)12ρ))=0, \varepsilon ((\nabla \varphi,\nabla \rho)) + {1 \over \varepsilon}((f(\varphi),\rho)) + \alpha (({(- \Delta)^{- {1 \over 2}}}(\varphi - < \varphi >),{(- \Delta)^{- {1 \over 2}}}\rho)) = 0, for ρH1(Ω)¯ \rho {\kern 1pt} \in {\kern 1pt} \overline {{H^1}(\Omega)} . In addition, the functional of the variational formulation is given by (φ,τ)=J(φ)+12r||φτ(φτ>)||12+α2||φφ||12, {\cal F}(\varphi,\tau) = {\cal J}(\varphi) + {1 \over {2r}}||\varphi - \tau - (\langle \varphi \rangle - \langle \tau \rangle >)||_{- 1}^2 + {\alpha \over 2}||\varphi - \langle \varphi \rangle ||_{- 1}^2, where J(φ)=ε2Ω|φ|2dx+1εΩF(φ)dx {\cal J}(\varphi) = {\varepsilon \over 2}\int_\Omega |\nabla \varphi {|^2}dx + {1 \over \varepsilon}\int_\Omega F(\varphi)dx and ||.||−1 is the norm defined in H1¯ \overline {{H^{- 1}}} .

Lemma 1

Setting F(z)=14|z|412|z|2 F(z) = {1 \over 4}|z{|^4} - {1 \over 2}|z{|^2} , we have F(z)+F(q)2F(z+q2)>14|zq|2, F(z) + F(q) - 2F({{z + q} \over 2}) > - {1 \over 4}|z - q{|^2}, for all z ∈ ℂ* and z is non null.

Proof

Noting that F(z)+F(q)2F(z+q2)=14|z|412|z|2+14|q|412|q|2132|z+q|4+14|z+q|2. F(z) + F(q) - 2F({{z + q} \over 2}) = {1 \over 4}|z{|^4} - {1 \over 2}|z{|^2} + {1 \over 4}|q{|^4} - {1 \over 2}|q{|^2} - {1 \over {32}}|z + q{|^4} + {1 \over 4}|z + q{|^2}.

Furthermore, |z + q|4 ≤ 4(|z|2 + |q|2)2 and |z+q|2=|z|2+|q|2+2Re(z¯q) |z + q{|^2} = |z{|^2} + |q{|^2} + 2Re(\bar zq) , which yields F(z)+F(q)2F(z+q2)18|z|4+18|q|414|z|2|q|214(|z|2+|q|22Re(z¯q))18(|z|2|q|2)214|zq|2>14|zq|2. \matrix{{F(z) + F(q) - 2F({{z + q} \over 2}) \ge {1 \over 8}|z{|^4} + {1 \over 8}|q{|^4} - {1 \over 4}|z{|^2}|q{|^2} - {1 \over 4}(|z{|^2} + |q{|^2} - 2Re(\bar zq))} \cr {\ge {1 \over 8}{{(|z{|^2} - |q{|^2})}^2} - {1 \over 4}|z - q{|^2} > - {1 \over 4}|z - q{|^2}.} \cr}

Proposition 2

The equation (8) has a solution in H1(Ω). Furthermore, if rɛ3 (*), then this solution is unique.

Proof

We show that there exists a unique minimizer (say φ*) of provided that (*) holds. First of all, notice that there are two positive constants c1 and c2, such that F(φ)=14|φ|412|φ|2c1|φ|2c2. F(\varphi) = {1 \over 4}|\varphi {|^4} - {1 \over 2}|\varphi {|^2} \ge {c_1}|\varphi {|^2} - {c_2}.

Secondly, (φ,τ)ε2||φ||2+c1ε||φ||2c2ε+12r[12||φφ||12||ττ||12]+α2||φφ||12ε2||φ||2+c1ε||φ||2+(14r+α2)||φφ||12+c, \matrix{{{\cal F}(\varphi,\tau) \ge {\varepsilon \over 2}||\nabla \varphi |{|^2} + {{{c_1}} \over \varepsilon}||\varphi |{|^2} - {{{c_2}} \over \varepsilon}} \hfill \cr {+ {1 \over {2r}}[{1 \over 2}||\varphi - \langle \varphi \rangle ||_{- 1}^2 - ||\tau - \langle \tau \rangle ||_{- 1}^2] + {\alpha \over 2}||\varphi - \langle \varphi \rangle ||_{- 1}^2} \hfill \cr {\ge {\varepsilon \over 2}||\nabla \varphi |{|^2} + {{{c_1}} \over \varepsilon}||\varphi |{|^2} + ({1 \over {4r}} + {\alpha \over 2})||\varphi - \langle \varphi \rangle ||_{- 1}^2 + c,} \hfill \cr} where c is a constant that depends on Ω, ɛ and c2. Consequently, we deduce from (12) that the functional (φ, τ) is coercive, and hence has a minimizing sequence φn ∈ H1(Ω). The sequence φn is now bounded in H1(Ω). Therefore, there exists a subsequence of φn that we shall not rename, such that φn converges weakly to φ* ∈ H1(Ω). Additionally, φn converges strongly to φ* in L2(Ω), due to the fact that H1(Ω) is compactly embedded in L2(Ω). We now recall that (φn,τ)=J(φn)+12r||φnτφnτ||12+α2||φnφn||12, {\cal F}({\varphi^n},\tau) = {\cal J}({\varphi^n}) + {1 \over {2r}}||{\varphi^n} - \tau - \langle {\varphi^n} - \tau \rangle ||_{- 1}^2 + {\alpha \over 2}||{\varphi^n} - \langle {\varphi^n}\rangle ||_{- 1}^2, which implies that ||φnτφnτ||12||φ*τφ*τ||12=(((Δ1)(φnτφnτ),φnτφnτ))(((Δ1)(φ*τφ*τ),φ*τφ*τ))=(((Δ1)(φnφ*φnφ*),φnτφnτ))+(((Δ1)(φ*τφ*τ,φnτφnτ)||φnφ*φnφ*||.||φnτφnτ||+||φnφ*φnφ*||.||φnτφnτ||, \matrix{{||{\varphi^n} - \tau - \langle {\varphi^n} - \tau \rangle ||_{- 1}^2 - ||{\varphi^*} - \tau - \langle {\varphi^*} - \tau \rangle ||_{- 1}^2} \cr {= (((- {\Delta^{- 1}})({\varphi^n} - \tau - \langle {\varphi^n} - \tau \rangle),{\varphi^n} - \tau - \langle {\varphi^n} - \tau \rangle))} \cr {- (((- {\Delta^{- 1}})({\varphi^*} - \tau - \langle {\varphi^*} - \tau \rangle),{\varphi^*} - \tau - \langle {\varphi^*} - \tau \rangle))} \cr {= (((- {\Delta^{- 1}})({\varphi^n} - {\varphi^*} - \langle {\varphi^n} - {\varphi^*}\rangle),{\varphi^n} - \tau - \langle {\varphi^n} - \tau \rangle))} \cr {+ (((- {\Delta^{- 1}})({\varphi^*} - \tau - \langle {\varphi^*} - \tau \rangle,{\varphi^n} - \tau - \langle {\varphi^n} - \tau \rangle)} \cr {\le ||{\varphi^n} - {\varphi^*} - \langle {\varphi^n} - {\varphi^*}\rangle ||.||{\varphi^n} - \tau - \langle {\varphi^n} - \tau \rangle ||} \cr {+ ||{\varphi^n} - {\varphi^*} - \langle {\varphi^n} - {\varphi^*}\rangle ||.||{\varphi^n} - \tau - \langle {\varphi^n} - \tau \rangle ||,} \cr} and ||φnφn||12||φ*φ*||12=(((Δ1)(φnφ*φnφ*,φnφn))+(((Δ1)(φ*φ*),φnφ*φnφ*))||φnφ*φnφ*||.||φnφn||+||φnφ*φnφ*||.||φ*φ*||, \matrix{{||{\varphi^n} - \langle {\varphi^n}\rangle ||_{- 1}^2 - ||{\varphi^*} - \langle {\varphi^*}\rangle ||_{- 1}^2} \cr {= (((- {\Delta^{- 1}})({\varphi^n} - {\varphi^*} - \langle {\varphi^n} - {\varphi^*}\rangle,{\varphi^n} - \langle {\varphi^n}\rangle))} \cr {+ (((- {\Delta^{- 1}})({\varphi^*} - \langle {\varphi^*}\rangle),{\varphi^n} - {\varphi^*} - \langle {\varphi^n} - {\varphi^*}\rangle))} \cr {\le ||{\varphi^n} - {\varphi^*} - \langle {\varphi^n} - {\varphi^*}\rangle ||.||{\varphi^n} - \langle {\varphi^n}\rangle || + ||{\varphi^n} - {\varphi^*} - \langle {\varphi^n} - {\varphi^*}\rangle ||.||{\varphi^*} - \langle {\varphi^*}\rangle ||,} \cr} and since φnφ* ∈ L2(Ω) strongly, then ||φnτφnτ||12||φ*τφ*τ||12 ||{\varphi^n} - \tau - \langle {\varphi^n} - \tau \rangle ||_{- 1}^2 \to ||{\varphi^*} - \tau - \langle {\varphi^*} - \tau \rangle ||_{- 1}^2 strongly, and ||φnφn||||φ*φ*||12 ||{\varphi^n} - \langle {\varphi^n}\rangle || \to ||{\varphi^*} - \langle {\varphi^*}\rangle ||_{- 1}^2 strongly. Furthermore, as F is continuous, we observe that F(φn) converges to F(φ*). By applying Fatou's Lemma, we can deduce that (φ*,τ)lim inf(φn,τ). {\cal F}({\varphi^*},\tau) \le \lim \inf {\cal F}({\varphi^n},\tau).

Therefore, has a minimizer in H1(Ω), i.e., ∃ φ*H1(Ω) such that φ* = ar gmin (φ, τ). Furthermore, with the assistance of the trace function and Neumann boundary conditions, we can easily prove that φ* satisfies the Neumann boundary condition φ*ν=0 {{\partial {\varphi^*}} \over {\partial \nu}} = 0 , and φ* serves as a weak solution for the variational problem. Next, we demonstrate the uniqueness of φ*; for this purpose, we prove that the functional is strictly convex. Let v and w belong to H1(Ω) such that φ = vw. (Note: ⟨φ⟩ = ⟨v⟩ − ⟨w⟩ = 0). Now, by employing interpolation and Young's inequalities, we obtain (v,τ)+(w,τ)2(v+w2,τ)ε4||φ||2+(α2+14r)||φ||1214ε||φ||1.||φ||ε4||φ||2+(α2+14r)||φ||1214ε(12ε2||φ||12+ε22||φ||2)(α2+14r)||φ||1214ε3||φ||12>0, \matrix{{{\cal F}(v,\tau) + {\cal F}(w,\tau) - 2{\cal F}({{v + w} \over 2},\tau)} \hfill \cr {\ge {\varepsilon \over 4}||\nabla \varphi |{|^2} + ({\alpha \over 2} + {1 \over {4r}})||\varphi ||_{- 1}^2 - {1 \over {4\varepsilon}}||\varphi |{|_{- 1}}.||\nabla \varphi ||} \hfill \cr {\ge {\varepsilon \over 4}||\nabla \varphi |{|^2} + ({\alpha \over 2} + {1 \over {4r}})||\varphi ||_{- 1}^2 - {1 \over {4\varepsilon}}({1 \over {2{\varepsilon^2}}}||\varphi ||_{- 1}^2 + {{{\varepsilon^2}} \over 2}||\nabla \varphi |{|^2})} \hfill \cr {\ge ({\alpha \over 2} + {1 \over {4r}})||\varphi ||_{- 1}^2 - {1 \over {4{\varepsilon^3}}}||\varphi ||_{- 1}^2} \hfill \cr {> 0,} \hfill \cr} under the assumption (*). As a result, is strictly convex, and the weak solution is unique.

Proposition 3

The operator T has a unique fixed point under the two specified conditions: (*) stated above and (**) defined below, 12α1ε2r1α1ε2a2ε2. {1 \over {2\alpha - {1 \over {{\varepsilon^2}}}}} \le r \le {1 \over {\alpha - {1 \over {{\varepsilon^2}}} - {{{a^2}\varepsilon} \over 2}}}.

Proof

We show that with the help of the two specified conditions, we can restrict the operator T to a compact convex set. By applying Schauder's fixed-point theorem, we can establish the existence of at least one fixed point, denoted as φ*. Furthermore, we can conclude the uniqueness of φ* based on the property that the functional is strictly convex. To simplify matters, we denote φ = φ*. Now, let's reframe the problem as follows: 1r((φτ,φ))+ε||Δφ||2+1ε((f(φ),φ))+((αφ,φ))=0. {1 \over r}((\varphi - \tau,\varphi)) + \varepsilon ||\Delta \varphi |{|^2} + {1 \over \varepsilon}((\nabla f(\varphi),\nabla \varphi)) + ((\alpha \varphi,\varphi)) = 0.

Take into account (4), we find 1r((φτ,φ))+ε||Δφ||21ε||φ||2α||φ||2. {1 \over r}((\varphi - \tau,\varphi)) + \varepsilon ||\Delta \varphi |{|^2} \le {1 \over \varepsilon}||\nabla \varphi |{|^2} - \alpha ||\varphi |{|^2}.

Therefore, (1r+α)||φ||2+ε||Δφ||21ε||φ||2+12rΩ|φ|2dx+12rΩ|τ|2dx1ε||φ||2+12r||φ||2+k, \matrix{{({1 \over r} + \alpha)||\varphi |{|^2} + \varepsilon ||\Delta \varphi |{|^2} \le {1 \over \varepsilon}||\nabla \varphi |{|^2} + {1 \over {2r}}\int_\Omega |\varphi {|^2}dx + {1 \over {2r}}\int_\Omega |\tau {|^2}dx} \cr {\le {1 \over \varepsilon}||\nabla \varphi |{|^2} + {1 \over {2r}}||\varphi |{|^2} + k,} \cr} where k is a constant depending on τ, r, and Ω. It then follows that (α+12r)||φ||2+ε||Δφ||21ε||φ||2+k. (\alpha + {1 \over {2r}})||\varphi |{|^2} + \varepsilon ||\Delta \varphi |{|^2} \le {1 \over \varepsilon}||\nabla \varphi |{|^2} + k.

Furthermore, through the utilization of the interpolation inequality followed by Young's inequality, we obtain ||φ||2||φ||.||φ||H2(Ω)12ε2||φ||2+ε22||Δφ||2+ε22φ212ε2||φ||2+ε22||Δφ||2+a2ε22τ2. \matrix{{||\nabla \varphi |{|^2} \le ||\varphi ||.||\varphi |{|_{{H^2}(\Omega)}} \le {1 \over {2{\varepsilon^2}}}||\varphi |{|^2} + {{{\varepsilon^2}} \over 2}||\Delta \varphi |{|^2} + {{{\varepsilon^2}} \over 2}{{\langle \varphi \rangle}^2}} \cr {\le {1 \over {2{\varepsilon^2}}}||\varphi |{|^2} + {{{\varepsilon^2}} \over 2}||\Delta \varphi |{|^2} + {{{a^2}{\varepsilon^2}} \over 2}{{\langle \tau \rangle}^2}.} \cr}

Consequently, (α+12r)||φ||2+ε||Δφ||212ε3||φ||2+ε2||Δφ||2+εa22τ2+k. (\alpha + {1 \over {2r}})||\varphi |{|^2} + \varepsilon ||\Delta \varphi |{|^2} \le {1 \over {2{\varepsilon^3}}}||\varphi |{|^2} + {\varepsilon \over 2}||\Delta \varphi |{|^2} + {{\varepsilon {a^2}} \over 2}{\langle \tau \rangle^2} + k.

Thus, (α+12r12ε3)||φ||2+ε2||Δφ||2||τ||2+k, (\alpha + {1 \over {2r}} - {1 \over {2{\varepsilon^3}}})||\varphi |{|^2} + {\varepsilon \over 2}||\Delta \varphi |{|^2} \le {\cal E}||\tau |{|^2} + k, such that =εa22 {\cal E} = {{\varepsilon {a^2}} \over 2} with a=1r1r+α a = {{{1 \over r}} \over {{1 \over r} + \alpha}} . Under the assumptions (*) and (**), we find ||φ||2=||T(τ)||2||τ||2+K, ||\varphi |{|^2} = ||T(\tau)|{|^2} \le {\cal E}'||\tau |{|^2} + {\cal K}', where ℰ′ and 𝒦′ < 1. Therefore, φ remains bounded in L2(Ω), and T now represents a mapping from the closed ball K=B[0,M]=φ,,L2(Ω);φL2(Ω)M K = B[0,M] = \varphi, \in,{L^2}(\Omega);\parallel \varphi {\parallel_{{L^2}(\Omega)}} \le M to itself, with an appropriate constant M > 0.

Furthermore, due to the stationary problem, we obtain the following inequality: ||Δφ||L2(Ω)2c||τ||L2(Ω)2+c. ||\Delta \varphi ||_{{L^2}(\Omega)}^2 \le c||\tau ||_{{L^2}(\Omega)}^2 + c'.

Since ⟨φ⟩ is null, we conclude that φ is uniformly bounded in H2(Ω), and it follows that B[0, M] is compact and convex in L2(Ω). It is also clear that T is continuous, which leaves us to show that T is compact. Consider the sequence τnτL2(Ω),T(τn)=φn; {\tau^n} \to \tau \in {L^2}(\Omega),T({\tau^n}) = {\varphi^n}; φn is bounded in H1(Ω) for all n. Then, by taking a subsequence (which we do not rename), we have: φn weakly converges to φH1(Ω), and φn strongly converges to φ in L2(Ω) using the Rellich-Kondrachov compactness theorem. In addition, since f is continuous, f (φn) converges to f (φ) almost everywhere, and f (φn) is bounded in L2(Ω); then, f (φn) weakly converges to f (φ) in L2(Ω) due to the weak dominated convergence theorem. Thus, φ = T (τ) is a weak unique solution for (8), thanks to the previous proposition, and T is a continuous operator. Finally, by applying Schauder's Theorem, the operator T has a fixed point in L2(Ω), which is the unique solution of the stationary problem.

Numerical analysis of the evolution problem

The given problem can be reformulated as follows: φt=φt=ΔwαφinΩ, {\varphi_t} = {{\partial \varphi} \over {\partial t}} = \Delta w - \alpha \varphi {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{in}}{\kern 1pt} {\kern 1pt} {\kern 1pt} \Omega, w=1εf(φ)εΔφinΩ, w = {1 \over \varepsilon}f(\varphi) - \varepsilon \Delta \varphi {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{in}}{\kern 1pt} {\kern 1pt} {\kern 1pt} \Omega, φν=ΔφνonΓ. {{\partial \varphi} \over {\partial \nu}} = {{\partial \Delta \varphi} \over {\partial \nu}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{on}}{\kern 1pt} {\kern 1pt} {\kern 1pt} \Gamma.

The variational formulation of (25)(27) is as follows: ((φt,ϕ))=((w,ϕ))α((φ,ϕ)), (({\varphi_t},\phi)) = - ((\nabla w,\nabla \phi)) - \alpha ((\varphi,\phi)), ((w,ψ))=1ε((f(φ),ψ))+ε((φ,ψ)), ((w,\psi)) = {1 \over \varepsilon}((f(\varphi),\psi)) + \varepsilon ((\nabla \varphi,\nabla \psi)), for all ϕ, ψH1(Ω). In our approach, we employ a quasi-uniform family of decompositions denoted as Ωh to effectively partition the domain Ω into k-simplices. Within this discretized framework, given a specific triangulation Ωh=ThΩhT {\Omega^h} = \bigcup\limits_{{T^h} \in {\Omega^h}} T , we establish the conventional P1 conforming finite element space, denoted as Vh. This space, characterized by functions mh belonging to C0(Ω¯) {C^0}(\overline \Omega) with the property that mh|T is affine for all T ∈ Ωh, plays a critical role in our numerical analysis. Notably, we observe that Vh is a subset of the more general function space H1(Ω). To facilitate our computations, we introduce the function Iφh I_\varphi^h , which represents a unique element within Vh and precisely replicates the values of the function φ at the nodes of the triangulation. It is important to note that our methodology aligns with the following well-established standard approximation result, affirming the reliability of our numerical approach φIφhL2(Ω)+hφIφhH1(Ω)Ch2φH2(Ω)forallφH2(Ω). \parallel \varphi - I_\varphi^h{\parallel_{{L^2}(\Omega)}} + h\parallel \varphi - I_\varphi^h{\parallel_{{H^1}(\Omega)}} \le C{h^2}\parallel \varphi {\parallel_{{H^2}(\Omega)}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{for}}\,{\rm{all}}{\kern 1pt} {\kern 1pt} \varphi \in {H^2}(\Omega).

Here, C > 0 is a constant that solely depends on Ωh. Additionally, the inverse estimate below still remains valid (refer to [24]). ||mh||C0(Ω¯)Chn2||mh||L2(Ω)forallmhVh. ||{m^h}|{|_{{C^0}(\bar \Omega)}} \le C{h^{{{- n} \over 2}}}||{m^h}|{|_{{L^2}(\Omega)}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \;{\rm{for}}\,{\rm{all}}{\kern 1pt} {\kern 1pt} {m^h} \in {V^h}.

Setting Vh¯=VhL(Ω)¯. \overline {{V^h}} = {V^h} \cap \overline {L(\Omega)}.

The discrete version of (28)(29) can be written as follows: Find (φh, wh) : [0, T ] → Vh ×Vh such that they satisfy the following conditions: ((φth,ϕ))=((wh,ϕ))α((φh,ϕ), ((\varphi_t^h,\phi)) = - ((\nabla {w^h},\nabla \phi)) - \alpha (({\varphi^h},\phi), ((wh,ψ))=1ε((f(φh),ψ))ε((φh,ψ)), (({w^h},\psi)) = {1 \over \varepsilon}((f({\varphi^h}),\psi)) - \varepsilon ((\nabla {\varphi^h},\nabla \psi)), for all ϕ, ψVh.

Error estimates

Setting φh(t)φ(t)=θφ+βφ,withθφ=φhφehandβφ=φehφ, {\varphi^h}(t) - \varphi (t) = {\theta^\varphi} + {\beta^\varphi},{\kern 1pt} {\kern 1pt} {\rm{with}}{\kern 1pt} {\kern 1pt} {\theta^\varphi} = {\varphi^h} - {\varphi_e}^h{\kern 1pt} {\kern 1pt} {\rm{and}}{\kern 1pt} {\kern 1pt} {\beta^\varphi} = {\varphi_e}^h - \varphi, wh(t)w(t)=θw+βw,withθw=whwehandβw=wehw, {w^h}(t) - w(t) = {\theta^w} + {\beta^w},{\kern 1pt} {\kern 1pt} {\rm{with}}{\kern 1pt} {\kern 1pt} {\theta^w} = {w^h} - {w_e}^h{\kern 1pt} {\kern 1pt} {\rm{and}}{\kern 1pt} {\kern 1pt} {\beta^w} = {w_e}^h - w, for all t ∈ [0, T ], where weh = weh(t) represents the elliptic projection of w = w(t), and φeh = φeh(t) is the elliptic projection of φ = φ(t). These projections satisfy the following conditions: ((weh,ψ))=((w,ψ))forallψH1(Ω)¯, ((\nabla {w_e}^h,\nabla \psi)) = ((\nabla w,\nabla \psi))\quad \quad {\rm{for}}\,{\rm{all}}{\kern 1pt} \,{\kern 1pt} \psi {\kern 1pt} \in \overline {{H^1}(\Omega)}, ((weh,1))=((w,1)), (({w_e}^h,1)) = ((w,1)), ((φeh,ψ))=((φ,ψ))forallψH1(Ω)¯, ((\nabla {\varphi_e}^h,\nabla \psi)) = ((\nabla \varphi,\nabla \psi))\quad \quad {\rm{for}}\,{\rm{all}}{\kern 1pt} \,{\kern 1pt} \psi {\kern 1pt} \in \overline {{H^1}(\Omega)}, ((φeh,1))=((φ,1)). ((\varphi_e^h,1)) = ((\varphi,1)).

Using the Lax-Milgram theorem and following the Poincaré inequality, it is evident that, for all wH1(Ω)¯ w \in \overline {{H^1}(\Omega)} , equations (36)(37) establish a unique solution wehVh(Ω)¯ {w_e}^h \in \overline {{V^h}(\Omega)} .

Likewise, for the function φH1(Ω)¯ \varphi \in \overline {{H^1}(\Omega)} , equations (38)(39) yield a unique solution φehVh(Ω)¯ {\varphi_e}^h \in \overline {{V^h}(\Omega)} .

Now, we proceed to define the bilinear form s(ϕ,ψ)=((ϕ,ψ)), s(\phi,\psi) = ((\nabla \phi,\nabla \psi)), which is coercive on H1(Ω)¯ \overline {{H^1}(\Omega)} , i.e., there exists c0 > 0, such that s(ϕ,ϕ)c0ϕH1¯2,forallϕH1(Ω)¯. s(\phi,\phi) \ge {c_0}\parallel \phi \parallel_{\overline {{H^1}}}^2,\quad \quad {\rm{for}}\,{\rm{all}}{\kern 1pt} {\kern 1pt} \,\phi {\kern 1pt} {\kern 1pt} \in {\kern 1pt} {\kern 1pt} \overline {{H^1}(\Omega)}.

We start by estimating βφ and βw.

Lemma 4

For all φH2(Ω), the function φehVh defined by (38) satisfies φehφL2(Ω)+hφehφH1(Ω)Ch2φH2(Ω). \parallel {\varphi_e}^h - \varphi {\parallel_{{L^2}(\Omega)}} + h\parallel {\varphi_e}^h - \varphi {\parallel_{{H^1}(\Omega)}} \le C{h^2}\parallel \varphi {\parallel_{{H^2}(\Omega)}}.

Proof

We first have the following equation: s(φeh,ψh)=s(φ,ψ),forallψVh¯. s(\varphi_e^h,{\psi^h}) = s(\varphi,\psi),{\kern 1pt} \,\,{\kern 1pt} {\rm{for}}\,{\rm{all}}\,\,{\kern 1pt} {\kern 1pt} \psi {\kern 1pt} \in {\kern 1pt} \overline {{V^h}}.

Then, since φehIφhVh¯ \varphi_e^h - I_\varphi^h \in \overline {{V^h}} , we obtain s(φehφ,φehφ)=s(φehφ,φehIφh)+s(φehφ,Iφhφ) s(\varphi_e^h - \varphi,\varphi_e^h - \varphi) = s(\varphi_e^h - \varphi,\varphi_e^h - I_\varphi^h) + s(\varphi_e^h - \varphi,I_\varphi^h - \varphi) and s(φehφ,φehφ)c0φehφH1¯2, s({\varphi_e}^h - \varphi,{\varphi_e}^h - \varphi) \ge {c_0}\parallel {\varphi_e}^h - \varphi \parallel_{\overline {{H^1}}}^2, which yields c0||φehφ||H1¯2s(φehφ,φehφ)||φehφ||H1¯||Iφhφ||H1¯. {c_0}||\varphi_e^h - \varphi ||_{\overline {{H^1}}}^2 \le s(\varphi_e^h - \varphi,\varphi_e^h - \varphi) \le ||\varphi_e^h - \varphi |{|_{\overline {{H^1}}}}||I_\varphi^h - \varphi |{|_{\overline {{H^1}}}}.

Therefore, ||φehφ||H1¯c01||Iφhφ||H1¯. ||\varphi_e^h - \varphi |{|_{\overline {{H^1}}}} \le c_0^{- 1}||I_\varphi^h - \varphi |{|_{\overline {{H^1}}}}.

As a direct result of (30), we deduce that ||φehφ||H1¯Ch||φ||H2(Ω). ||\varphi_e^h - \varphi |{|_{\overline {{H^1}}}} \le Ch||\varphi |{|_{{H^2}(\Omega)}}.

Furthermore, for zL2(Ω), let ϕ represent the unique solution of s(ϕ,ψ)=((z,ψ)),forallψH1¯. s(\phi,\psi) = ((z,\psi)),{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \,{\rm{for}}\,{\rm{all}}{\kern 1pt} {\kern 1pt} \psi {\kern 1pt} {\kern 1pt} \in \overline {{H^1}}.

Thus, we obtain that ϕH2(Ω)CzL2(Ω), \parallel \phi {\parallel_{{H^2}(\Omega)}} \le C\parallel z{\parallel_{{L^2}(\Omega)}}, where the constant C does not depend on z.

Taking now ψ = φehφ in (45), we infer that ((z,φehφ))=s(ϕ,φehφ)=s(ϕIϕh,φehφ)||ϕIϕh||H1¯||φehφ||H1¯. \matrix{{((z,\varphi_e^h - \varphi)) = s(\phi,\varphi_e^h - \varphi) = s(\phi - I_\phi^h,\varphi_e^h - \varphi)} \hfill & {\le ||\phi - I_\phi^h|{|_{\overline {{H^1}}}}||\varphi_e^h - \varphi |{|_{\overline {{H^1}}}}.} \hfill \cr}

Moreover, by selecting z = φehφ and considering (30) and (44), we obtain φehφL2(Ω)2ChϕH2(Ω)ChφH2(Ω)Ch2φehφL2(Ω)φH2(Ω). \matrix{{\parallel {\varphi_e}^h - \varphi \parallel_{{L^2}(\Omega)}^2} \hfill & {\le Ch\parallel \phi {\parallel_{{H^2}(\Omega)}}Ch\parallel \varphi {\parallel_{{H^2}(\Omega)}}} \hfill \cr {} \hfill & {\le C{h^2}\parallel {\varphi_e}^h - \varphi {\parallel_{{L^2}(\Omega)}}\parallel \varphi {\parallel_{{H^2}(\Omega)}}.} \hfill \cr}

Thus, φehφL2(Ω)Ch2φH2(Ω). \parallel {\varphi_e}^h - \varphi {\parallel_{{L^2}(\Omega)}} \le C{h^2}\parallel \varphi {\parallel_{{H^2}(\Omega)}}.

This inequality, along with inequality (44), yield the result.

In a similar manner, we can establish the existence of a constant c that is solely dependent on Ωh. For all wH2(Ω), the function wehVh, as defined in (36)(37), complies with the following: wehwL2(Ω)+hwehwH1(Ω)Ch2wH2(Ω). \parallel {w_e}^h - w{\parallel_{{L^2}(\Omega)}} + h\parallel {w_e}^h - w{\parallel_{{H^1}(\Omega)}} \le C{h^2}\parallel w{\parallel_{{H^2}(\Omega)}}.

Next, we define the discrete inverse Laplacian DL1,h:L¯Vh¯ D_L^{- 1,h}:\overline L \to \overline {{V^h}} by DL1,hf=mh D_L^{- 1,h}f = {m^h} , where fL(Ω)¯ f \in \overline {L(\Omega)} and mhVh¯ {m^h}{\kern 1pt} \in \overline {{V^h}} solves ((mh,ψh))=((f,ψh)),forallψhVh. ((\nabla {m^h},\nabla {\psi^h})) = ((f,{\psi^h})),\quad \quad {\rm{for}}\,{\rm{all}}{\kern 1pt} \,\,{\kern 1pt} {\psi^h}{\kern 1pt} {\kern 1pt} \in {\kern 1pt} {\kern 1pt} {V^h}.

Note that DL1,h D_L^{- 1,h} is self-adjoint and positive semi-definite on H1¯ \overline {{H^1}} , since ((g,DL1,hf))=((DL1,hg,DL1,hf))=((f,DL1,hg)),forallf,gL(Ω)¯,((f,DL1,hf))=DL1,hfL2(Ω)2,forallfL(Ω)¯. \matrix{{((g,D_L^{- 1,h}f)) = ((\nabla D_L^{- 1,h}g,\nabla D_L^{- 1,h}f)) = ((f,D_L^{- 1,h}g)),\quad \quad {\rm{for}}\,{\rm{all}}\,{\kern 1pt} {\kern 1pt} f,g{\kern 1pt} {\kern 1pt} \in {\kern 1pt} {\kern 1pt} \overline {L(\Omega)},} \cr {((f,D_L^{- 1,h}f)) = \parallel \nabla D_L^{- 1,h}f\parallel_{{L^2}(\Omega)}^2,\quad \quad {\rm{for}}\,{\rm{all}}{\kern 1pt} {\kern 1pt} f{\kern 1pt} {\kern 1pt} \in \overline {L(\Omega)}.} \cr}

By expressing the discrete negative semi-norm in the following manner: m1,h=((DL1,hm,m))12=DL1,hmL2(Ω),forallmL(Ω)¯, \parallel m{\parallel_{- 1,h}} = {((D_L^{- 1,h}m,m))^{{1 \over 2}}} = \parallel \nabla D_L^{- 1,h}m{\parallel_{{L^2}(\Omega)}},\quad \quad {\rm{for}}\,{\rm{all}}{\kern 1pt} {\kern 1pt} \,m{\kern 1pt} {\kern 1pt} \in {\kern 1pt} {\kern 1pt} \overline {L(\Omega)}, and using an orthonormal basis of Vh¯ \overline {{V^h}} for the L2(Ω)-scalar product, it becomes evident that the subsequent interpolation inequality is satisfied mhL2(Ω)2mh1,hmhH1(Ω),forallmhVh¯. \parallel {m^h}\parallel_{{L^2}(\Omega)}^2 \le \parallel {m^h}{\parallel_{- 1,h}}\parallel {m^h}{\parallel_{{H^1}(\Omega)}},{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{for}}\,{\rm{all}}{\kern 1pt} \,{\kern 1pt} {m^h}{\kern 1pt} {\kern 1pt} \in {\kern 1pt} {\kern 1pt} \overline {{V^h}}.

It is also observed that f1,hcpfL2(Ω),forallfL(Ω)¯, \parallel f{\parallel_{- 1,h}} \le {c_p}\parallel f{\parallel_{{L^2}(\Omega)}},\quad \quad {\rm{for}}\,{\rm{all}}{\kern 1pt} {\kern 1pt} f{\kern 1pt} \in {\kern 1pt} \overline {L(\Omega)}, where cp is the Poincaré constant. Moreover, we define δ(t)=1Vol(Ω)((θφ(t),1)),forallt0, \delta (t) = {1 \over {{\kern 1pt} Vol{\kern 1pt} (\Omega)}}(({\theta^\varphi}(t),1)),\quad \quad {\rm{for}}\,{\rm{all}}{\kern 1pt} \,{\kern 1pt} {\kern 1pt} t \ge 0, so that ((θφδ, 1)) = 0.

In the remaining part of this section, the final time T ∈ (0, ∞) is defined, and we express Z(t)=θφH1(Ω)2+θtφδt1,h2. {\cal Z}(t) = \parallel {\theta^\varphi}\parallel_{{H^1}(\Omega)}^2 + \parallel \theta_t^\varphi - {\delta_t}\parallel_{- 1,h}^2.

We now prove the following lemma.

Lemma 5

Let (φ, w) be a solution of (28)(29) with sufficient regularity, and let (φh, wh) be a solution of (32)(33). If R < ∞, supt[0,T]φ(t)C0(Ω¯)<R,supt[0,T]φt(t)C0(Ω¯)R,supt[0,T]φh(0)C0(Ω¯)<R, \matrix{{\mathop {\sup}\limits_{t{\kern 1pt} \in {\kern 1pt} [0,T]} \parallel \varphi (t){\parallel_{{C^0}(\overline \Omega)}} < R,} \hfill \cr {\mathop {\sup}\limits_{t{\kern 1pt} \in {\kern 1pt} [0,T]} \parallel {\varphi_t}(t){\parallel_{{C^0}(\overline \Omega)}} \le R,} \hfill \cr {\mathop {\sup}\limits_{t{\kern 1pt} \in {\kern 1pt} [0,T]} \parallel {\varphi^h}(0){\parallel_{{C^0}(\overline \Omega)}} < R,} \hfill \cr} and φh(t)L(Ω)R,foreveryt[0,Th], \parallel {\varphi^h}(t){\parallel_{{L^\infty}(\Omega)}} \le R,{\rm{for every}}{\kern 1pt} {\kern 1pt} t \in [0,{T^h}], where Th ∈ (0, T ] is the maximal time, then Z(t)+0t[||θw||H12+(12α2)||θtφ||H12]dsCZ(0)+C0t[||βφ||L22+||βttφ||L22]ds+C0t[||βw||L22+||βtw||L22]dsforallt[0,Th]. \matrix{{{\cal Z}(t) + \int_0^t [||{\theta^w}||_{{H^1}}^2 + ({1 \over 2} - {\alpha^2})||\theta_t^\varphi ||_{{H^1}}^2]ds} \hfill \cr {\le C{\cal Z}(0) + C'\int_0^t [||{\beta^\varphi}||_{{L^2}}^2 + ||\beta_{tt}^\varphi ||_{{L^2}}^2]ds} \hfill \cr {+ C'\int_0^t [||{\beta^w}||_{{L^2}}^2 + ||\beta_t^w||_{{L^2}}^2]ds\quad \quad for{\rm{}}all{\kern 1pt} {\kern 1pt} \,t{\kern 1pt} \in {\kern 1pt} [0,{T^h}].} \hfill \cr}

Moreover, ||((θφ,1))||C[Z12(t)+||θφ||L2],forallt[0,T]. ||(({\theta^\varphi},1))|| \le C[{{\cal Z}^{{1 \over 2}}}(t) + ||{\theta^\varphi}|{|_{{L^2}}}],\quad \quad for\,all{\kern 1pt} \,{\kern 1pt} t{\kern 1pt} \in {\kern 1pt} [0,T].

Proof

It follows from (28) and (32) that ((φth,ϕ))((φt,ϕ))=((wh,ϕ))+((w,ϕ))+α((φhφ,ϕ)). ((\varphi_t^h,\phi)) - (({\varphi_t},\phi)) = - ((\nabla {w^h},\nabla \phi)) + ((\nabla w,\nabla \phi)) + \alpha (({\varphi^h} - \varphi,\phi)).

Therefore, ((θtφ,ϕ))+((θw,ϕ))=((βtφ,ϕ))+α((φhφ,ϕ)). ((\theta_t^\varphi,\phi)) + ((\nabla {\theta^w},\nabla \phi)) = - ((\beta_t^\varphi,\phi)) + \alpha (({\varphi^h} - \varphi,\phi)).

In particular, if ϕ ≡ 1, we obtain δt(t)=1Vol(Ω)((θtφ,1))=1Vol(Ω)[((βtφ,1))+α((θφ+βφ,1))]. {\delta_t}(t) = {1 \over {{\bf{Vol}}(\Omega)}}((\theta_t^\varphi,1)) = - {1 \over {{\bf{Vol}}(\Omega)}}[((\beta_t^\varphi,1)) + \alpha (({\theta^\varphi} + {\beta^\varphi},1))].

Due to equation (39), we can derive the following: ((βtφ,1))=0. ((\beta_t^\varphi,1)) = 0.

Differentiating (55) with respect to time, we get ((θttφ,1))=1Vol(Ω)δtt(t)=1Vol(Ω)[((βttφ,1))+α((θtφ,1))+((βtφ,1))], ((\theta_{tt}^\varphi,1)) = {1 \over {{\bf{Vol}}(\Omega)}}{\delta_{tt}}(t) = - {1 \over {{\bf{Vol}}(\Omega)}}[((\beta_{tt}^\varphi,1)) + \alpha ((\theta_t^\varphi,1)) + ((\beta_t^\varphi,1))], which yields, δtt(t)=αVol(Ω)((θtφ,1)). {\delta_{tt}}(t) = {\alpha \over {{\bf{Vol}}(\Omega)}}((\theta_t^\varphi,1)).

Similarly, by subtracting (29) from (33) now, we get: ((wh,ψ))((w,ψ))=1ε((f(φh),ψ))1ε((f(φ),ψ))ε((φh,ψ))+ε((φ,ψ)). (({w^h},\psi)) - ((w,\psi)) = {1 \over \varepsilon}((f({\varphi^h}),\psi)) - {1 \over \varepsilon}((f(\varphi),\psi)) - \varepsilon ((\nabla {\varphi^h},\psi)) + \varepsilon ((\nabla \varphi,\nabla \psi)).

Hence, ((θw,ψ))+ε((θφ,ψ))=((βw,ψ))1ε((f(φh)f(φ),ψ)), - (({\theta^w},\psi)) + \varepsilon ((\nabla {\theta^\varphi},\nabla \psi)) = (({\beta^w},\psi)) - {1 \over \varepsilon}((f({\varphi^h}) - f(\varphi),\psi)), on [0,T], for all ψMh|.

Furthermore, using φ = θw in (54) and ψ=θtφ \psi = \theta _t^\varphi in (58), and then summing the results, we obtain ||θw||L2(Ω)2+12ddt||θφ||L2(Ω)2=2((θtφ,θw))((βtφ,θw))+α((θφ,θw))+α((βφ,θw))+((βw,θtφ))((f(φh)f(φ),θtφ)). \matrix{{||\nabla {\theta^w}||_{{L^2}(\Omega)}^2 + {1 \over 2}{d \over {dt}}||\nabla {\theta^\varphi}||_{{L^2}(\Omega)}^2} \hfill & {= - 2((\theta_t^\varphi,{\theta^w})) - ((\beta_t^\varphi,{\theta^w})) + \alpha (({\theta^\varphi},{\theta^w})) + \alpha (({\beta^\varphi},{\theta^w}))} \hfill \cr {} \hfill & {+ (({\beta^w},\theta_t^\varphi)) - ((f({\varphi^h}) - f(\varphi),\theta_t^\varphi)).} \hfill \cr}

In addition, the function f is Lipschitz with constant Lf, therefore f(φh)f(φ)L2(Ω)LfφhφL2(Ω). \parallel f({\varphi^h}) - f(\varphi){\parallel_{{L^2}(\Omega)}} \le {L_f}\parallel {\varphi^h} - \varphi {\parallel_{{L^2}(\Omega)}}.

Hence, ||θw||H1(Ω)2+12ddt||θφ||H1(Ω)22||θtφ||L2(Ω)[Vol12(Ω)|((θw,1))|+cp||θw||H1(Ω)]+||βtφ||L2||θw||L2(Ω)+α||θφ||L2(Ω)||θw||L2(Ω)+α||βφ||L2(Ω)||θw||L2(Ω)+||βw||L2(Ω)||θtφ||L2(Ω)+1ε||θtφ||L2(Ω).Lf[||θφ||L2(Ω)+||βφ||L2(Ω)]. \matrix{{||{\theta^w}||_{{H^1}(\Omega)}^2 + {1 \over 2}{d \over {dt}}||{\theta^\varphi}||_{{H^1}(\Omega)}^2} \hfill & {\le 2||\theta_t^\varphi |{|_{{L^2}(\Omega)}}[{\bf{Vo}}{{\bf{l}}^{{{- 1} \over 2}}}(\Omega)|(({\theta^w},1))| + {c_p}||{\theta^w}|{|_{{H^1}(\Omega)}}]} \hfill \cr {} \hfill & {+ ||\beta_t^\varphi |{|_{{L^2}}}||{\theta^w}|{|_{{L^2}(\Omega)}} + \alpha ||{\theta^\varphi}|{|_{{L^2}(\Omega)}}||{\theta^w}|{|_{{L^2}(\Omega)}}} \hfill \cr {} \hfill & {+ \alpha ||{\beta^\varphi}|{|_{{L^2}(\Omega)}}||{\theta^w}|{|_{{L^2}(\Omega)}} + ||{\beta^w}|{|_{{L^2}(\Omega)}}||\theta_t^\varphi |{|_{{L^2}(\Omega)}}} \hfill \cr {} \hfill & {+ {1 \over \varepsilon}||\theta_t^\varphi |{|_{{L^2}(\Omega)}}.{L_f}[||{\theta^\varphi}|{|_{{L^2}(\Omega)}} + ||{\beta^\varphi}|{|_{{L^2}(\Omega)}}].} \hfill \cr}

We now estimate ((θw, 1)). We choose ψ ≡ 1 in (58) and use ((βw, 1)) = 0, so the estimate (59) yields |((θw,1))|Lf[||θφ||L2(Ω)+||βφ||L2(Ω)]Vol12(Ω)on[0,Th]. |(({\theta^w},1))| \le {L_f}[||{\theta^\varphi}|{|_{{L^2}(\Omega)}} + ||{\beta^\varphi}|{|_{{L^2}(\Omega)}}]{\bf{Vo}}{{\bf{l}}^{{{- 1} \over 2}}}(\Omega){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} on{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} [0,{T^h}].

Thanks to inequalities (60) and (58), the triangle inequality, and the generalized Poincaré inequality, we find vL2(Ω)2cpvH1(Ω)2,forallvH1(Ω), \parallel v\parallel_{{L^2}(\Omega)}^2 \le {c'_p}\parallel v\parallel_{{H^1}(\Omega)}^2,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{for}}\,{\rm{all}}\,{\kern 1pt} {\kern 1pt} {\kern 1pt} v \in {H^1}(\Omega), and we deduce (53).

Besides, we have that abεa2+(4ε)1b2,foralla,b0,ε>0. ab \le \varepsilon {a^2} + {(4\varepsilon)^{- 1}}{b^2},\quad \quad {\rm{for}}\,{\rm{all}}{\kern 1pt} \,{\kern 1pt} a,b \ge 0,{\kern 1pt} {\kern 1pt} \forall {\kern 1pt} \varepsilon > 0.

It then follows from (60)(62) that ||θw||H1(Ω)+ddt||θφ||H1(Ω)C1(||βφ||L2(Ω)2+||βw||L2(Ω)2+||βtφ||L2(Ω)2)C2(||θφ||L2(Ω)2+||θtφ||L2(Ω)2), \matrix{{||{\theta^w}|{|_{{H^1}(\Omega)}} + {d \over {dt}}||{\theta^\varphi}|{|_{{H^1}(\Omega)}}} \hfill & {\le {C_1}(||{\beta^\varphi}||_{{L^2}(\Omega)}^2 + ||{\beta^w}||_{{L^2}(\Omega)}^2 + ||\beta_t^\varphi ||_{{L^2}(\Omega)}^2)} \hfill \cr {} \hfill & {\le {C_2}(||{\theta^\varphi}||_{{L^2}(\Omega)}^2 + ||\theta_t^\varphi ||_{{L^2}(\Omega)}^2),} \hfill \cr} where the constants C1 and C2 depend on Vol(Ω), cp, Lf, and α.

We now must calculate the value of θtφ \theta_t^\varphi , so if we differentiate equation (59) with respect to time, we get ((θttφ,ϕ))+((θtw,ϕ))=((βttφ,ϕ))+α((θtφ+βtφ,ϕ)). ((\theta_{tt}^\varphi,\phi)) + ((\nabla \theta_t^w,\nabla \phi)) = - ((\beta_{tt}^\varphi,\phi)) + \alpha ((\theta_t^\varphi + \beta_t^\varphi,\phi)).

In addition, if we differentiate (58) with respect to time, we get ((θtw,ψ))+ε((θtφ,ψ))=((βtφ,ψ))1ε(([f(φh)f(φ)]t,ψ)). - ((\theta_t^w,\psi)) + \varepsilon ((\nabla \theta_t^\varphi,\nabla \psi)) = ((\beta_t^\varphi,\psi)) - {1 \over \varepsilon}(({[f({\varphi^h}) - f(\varphi)]_t},\psi)).

Next, we select ϕ=DL1,h(θtφδt) \phi = D_L^{- 1,h}(\theta_t^\varphi - {\delta_t}) in equation (64) and ψ=θtφδt \psi = \theta_t^\varphi - {\delta_t} in equation (65). When we combine these equations, we obtain ((θttφ,DL1,h(θtφδt))+ε||θtφ||H1(Ω)2=(((βttφ,DL1,h(θtφδt)))+((βtw,θtφδt))+α((θtφ+βtφ,DL1,h(θtφδt)))(([f(φh)f(φ)]t,θtφδt)). \matrix{{((\theta_{tt}^\varphi,D_L^{- 1,h}(\theta_t^\varphi - \delta t)) + \varepsilon ||\theta_t^\varphi ||_{{H^1}(\Omega)}^2 = - (((\beta_{tt}^\varphi,D_L^{- 1,h}(\theta_t^\varphi - {\delta_t}))) + ((\beta_t^w,\theta_t^\varphi - {\delta_t}))} \cr {+ \alpha ((\theta_t^\varphi + \beta_t^\varphi,D_L^{- 1,h}(\theta_t^\varphi - {\delta_t}))) - (({{[f({\varphi^h}) - f(\varphi)]}_t},\theta_t^\varphi - {\delta_t})).} \cr}

In the first term on the left-hand side, we can express θttφ=(θttφδtt)+δtt. \theta_{tt}^\varphi = (\theta_{tt}^\varphi - {\delta_{tt}}) + {\delta_{tt}}.

We should note that ((δtt+βttφ,1))=α((θtφ,1)) (({\delta_{tt}} + \beta_{tt}^\varphi,1)) = \alpha ((\theta_t^\varphi,1)) according to (57). As for the nonlinear terms, we have [f(φh)f(φ)]t=f(φh)[φthφt]+φt[f(φh)f(φ)] {[f({\varphi^h}) - f(\varphi)]_t} = f'({\varphi^h})[\varphi_t^h - {\varphi_t}] + {\varphi_t}[f'({\varphi^h}) - f'(\varphi)] and α[φhφ]t=α(θtφ+βtφ). \alpha {[{\varphi^h} - \varphi]_t} = \alpha (\theta_t^\varphi + \beta_t^\varphi).

Thus, equation (66) implies 12ddt||θtφδt||1,h2+ε||θtφ||H1(Ω)2||δtt+βttφ||1,h||θtφδt||1,h+||βtw||L2(Ω)||θtφδt||L2(Ω)+sup|f|(||θtφδt||L2(Ω)+||βtφ||L2(Ω)+|δt|)||θtφδt||L2(Ω)+Lf(||θφ||L2(Ω)+||βφ||L2(Ω))||θtφδt||L2(Ω)+α(||θtφ||L2(Ω)+||βtφ||L2(Ω))||θtφδt||1,h, \matrix{{{1 \over 2}{d \over {dt}}||\theta_t^\varphi - {\delta_t}||_{- 1,h}^2 + \varepsilon ||\theta_t^\varphi ||_{{H^1}(\Omega)}^2} \hfill & {\le ||{\delta_{tt}} + \beta_{tt}^\varphi |{|_{- 1,h}}||\theta_t^\varphi - {\delta_t}|{|_{- 1,h}} + ||\beta_t^w|{|_{{L^2}(\Omega)}}||\theta_t^\varphi - {\delta_t}|{|_{{L^2}(\Omega)}}} \hfill \cr {} \hfill & {+ sup|f'|(||\theta_t^\varphi - {\delta_t}|{|_{{L^2}(\Omega)}} + ||\beta_t^\varphi |{|_{{L^2}(\Omega)}} + |{\delta_t}|)||\theta_t^\varphi - {\delta_t}|{|_{{L^2}(\Omega)}}} \hfill \cr {} \hfill & {+ {L_{f'}}(||{\theta^\varphi}|{|_{{L^2}(\Omega)}} + ||{\beta^\varphi}|{|_{{L^2}(\Omega)}})||\theta_t^\varphi - {\delta_t}|{|_{{L^2}(\Omega)}}} \hfill \cr {} \hfill & {+ \alpha (||\theta_t^\varphi |{|_{{L^2}(\Omega)}} + ||\beta_t^\varphi |{|_{{L^2}(\Omega)}})||\theta_t^\varphi - {\delta_t}|{|_{- 1,h}},} \hfill \cr} where Lf is the Lipschitz constant of f′ on [−F, F].

With the help of the interpolation inequality (49) applied to vh=θtφδt {v^h} = \theta_t^\varphi - {\delta_t} i.e. θtφδtL2(Ω)θtφδt1,hθtφH1(Ω), \parallel \theta_t^\varphi - {\delta_t}{\parallel_{{L^2}(\Omega)}} \le \parallel \theta_t^\varphi - {\delta_t}{\parallel_{- 1,h}}\parallel \theta_t^\varphi {\parallel_{{H^1}(\Omega)}}, and the inequalities (50) and (63), along with the Poincaré Inequality, we obtain ddt||θtφδt||1,h2+||θtφ||H1(Ω)C3[||δtt+βφtt||L2(Ω)2+||βtw||L2(Ω)2+||βtφ||L2(Ω)2+2||βφ||+2||δt||L2(Ω)2]+C4(||θtφδt||1,h2+||θφ||L2(Ω)2),on[0,Th], \matrix{{{d \over {dt}}||\theta_t^\varphi - {\delta_t}||_{- 1,h}^2 + ||\theta_t^\varphi |{|_{{H^1}(\Omega)}}} \cr {\le {C_3}[||{\delta_{tt}} + {\beta^\varphi}tt||_{{L^2}(\Omega)}^2 + ||\beta_t^w||_{{L^2}(\Omega)}^2 + ||\beta_t^\varphi ||_{{L^2}(\Omega)}^2 + 2||{\beta^\varphi}|| + 2||{\delta_t}||_{{L^2}(\Omega)}^2]} \cr {+ \;{C_4}(||\theta_t^\varphi - {\delta_t}||_{- 1,h}^2 + ||{\theta^\varphi}||_{{L^2}(\Omega)}^2),{\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{on}}\,{\kern 1pt} {\kern 1pt} [0,{T^h}],} \cr} for some constants C3 and C4 which depend on R, cp, Lf′, sup|L|[R,R] \mathop {\sup |L'|}\limits_{[- R,R]} and sup|f|[R,R] \mathop {\sup |f'|}\limits_{[- R,R]} .

Finally, we add (63) and (69), using the modified Poincaré inequality (61) and the triangular inequality, we get θtφL2(Ω)2θtφδtL2(Ω)2+|δt|2, \parallel \theta_t^\varphi {\parallel_{{L^2}{{(\Omega)}^2}}} \le \parallel \theta_t^\varphi - {\delta_t}\parallel_{{L^2}(\Omega)}^2 + |{\delta_t}{|^2}, the interpolation inequality (68), and inequality (62), we obtain that 12||θtφ||H1(Ω)2+||θw||H1(Ω)+ddtZ(t)C5(||βw||L2(Ω)2+||βφ||L2(Ω)2+|δt|2+||βtw||L2(Ω)2+||βtφ||L2(Ω)2+||βttφ||L2(Ω)2+|δtt|2)+C6(||θtφδt||1,h+||θφ||L2(Ω)2+||θtφ||L2(Ω)2C5(||βw||L2(Ω)2+||βφ||L2(Ω)2+|δt|2+||βtw||L2(Ω)2+||βtφ||L2(Ω)2+||βttφ||L2(Ω)2+|δtt|2)+C6(||θtφδt||1,h2+||θφ||H1(Ω)2). \matrix{{{1 \over 2}||\theta_t^\varphi ||_{{H^1}(\Omega)}^2 + ||{\theta^w}|{|_{{H^1}(\Omega)}} + {d \over {dt}}{\cal Z}(t) \le {C_5}(||{\beta^w}||_{{L^2}(\Omega)}^2 + ||{\beta^\varphi}||_{{L^2}(\Omega)}^2 + |{\delta_t}{|^2} + ||\beta_t^w||_{{L^2}(\Omega)}^2 + ||\beta_t^\varphi ||_{{L^2}(\Omega)}^2} \cr {+ ||\beta_{tt}^\varphi ||_{{L^2}(\Omega)}^2 + |{\delta_{tt}}{|^2}) + {C_6}(||\theta_t^\varphi - {\delta_t}|{|_{- 1,h}} + ||{\theta^\varphi}||_{{L^2}(\Omega)}^2 + ||\theta_t^\varphi ||_{{L^2}(\Omega)}^2} \cr {\le {C_5}(||{\beta^w}||_{{L^2}(\Omega)}^2 + ||{\beta^\varphi}||_{{L^2}(\Omega)}^2 + |{\delta_t}{|^2} + ||\beta_t^w||_{{L^2}(\Omega)}^2 + ||\beta_t^\varphi ||_{{L^2}(\Omega)}^2 + ||\beta_{tt}^\varphi ||_{{L^2}(\Omega)}^2 + |{\delta_{tt}}{|^2})} \cr {+ {C_6}(||\theta_t^\varphi - {\delta_t}||_{- 1,h}^2 + ||{\theta^\varphi}||_{{H^1}(\Omega)}^2).} \cr}

Moreover, due to equation (33), we have |δt|2α2||θφ||L2(Ω)2 |{\delta_t}{|^2} \le {\alpha^2}||{\theta^\varphi}||_{{L^2}(\Omega)}^2 and |δtt|2α2||θtφ||L2(Ω)2, |{\delta_{tt}}{|^2} \le {\alpha^2}||\theta_t^\varphi ||_{{L^2}(\Omega)}^2, which lead to the the following inequality: (12α2)||θtφ||H1(Ω)2+||θw||H1(Ω)2+ddt||Z(t)||C(||βw||L2(Ω)2+||βφ||L2(Ω)2+||βtw||L2(Ω)2+||βttφ||L2(Ω)2)+CZ(t). \matrix{{({1 \over 2} - {\alpha^2})||\theta_t^\varphi ||_{{H^1}(\Omega)}^2 + ||{\theta^w}||_{{H^1}(\Omega)}^2 + {d \over {dt}}||{\cal Z}(t)||} \cr {\le C(||{\beta^w}||_{{L^2}(\Omega)}^2 + ||{\beta^\varphi}||_{{L^2}(\Omega)}^2 + ||\beta_t^w||_{{L^2}(\Omega)}^2 + ||\beta_{tt}^\varphi ||_{{L^2}(\Omega)}^2) + C'{\cal Z}(t).} \cr}

Therefore, we conclude (52) by applying Gronwall's lemma.

Theorem 6

Let (φ, w) represent a solution to (28)(29) such that φ, φt, φtt, w, wtL2(0, T, H2(Ω)), and let (φh, wh) denote the solution to (32)(33).

If θφ(0)=0,θw(0)=0,andβφ(0)=0, {\theta^\varphi}(0) = 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\theta^w}(0) = 0,{\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\beta^\varphi}(0) = 0,

then sup[0,T](φhφL2(Ω)+φthφt1,h)Ch2,(0TwhwL2(Ω)2ds)12Ch2,sup[0,T]φhφH1(Ω)Ch, \matrix{{\mathop {\sup}\limits_{[0,T]} (\parallel {\varphi^h} - \varphi {\parallel_{{L^2}(\Omega)}} + \parallel \varphi_t^h - {\varphi_t}{\parallel_{- 1,h}}) \le C{h^2},} \cr {{{\left({\int_0^T \parallel {w^h} - w\parallel_{{L^2}(\Omega)}^2ds} \right)}^{{1 \over 2}}} \le C{h^2},} \cr {\mathop {\sup}\limits_{[0,T]} \parallel {\varphi^h} - \varphi {\parallel_{{H^1}(\Omega)}} \le Ch,} \cr}

and (0T(whwH1(Ω)2+φthφtH1(Ω)2)ds)12Ch. {\left({\int_0^T \left({\parallel {w^h} - w\parallel_{{H^1}(\Omega)}^2 + \parallel \varphi_t^h - {\varphi_t}\parallel_{{H^1}(\Omega)}^2} \right)ds} \right)^{{1 \over 2}}} \le Ch.

Proof

We start by differentiating equations (36)(38) with respect to time, we find that the elliptic projections of φt and wt are respectively (φe)t and (we)t. The same applies to φtt and wtt. Given that φC1([0, T ], H2(Ω)) and due to the Sobolev continuous injection property, H2(Ω)C0(Ω¯) {H^2}(\Omega ) \subset {C^0}(\overline \Omega) , we can conclude that φ,φtC0([0,T],C0(Ω¯)). \varphi,{\varphi_t}{\kern 1pt} {\kern 1pt} \in {\kern 1pt} {\kern 1pt} {C^0}([0,T],{C^0}(\overline \Omega)).

Thus, supt[0,T]||φ(t)||C0(Ω¯)<R, \mathop {\sup}\limits_{t{\kern 1pt} {\kern 1pt} \in {\kern 1pt} {\kern 1pt} [0,T]} ||\varphi (t)|{|_{{C^0}(\overline \Omega)}} < R, and supt[0,T]||φt(t)||C0(Ω¯)R,forsomeR>0. \mathop {\sup}\limits_{t{\kern 1pt} {\kern 1pt} \in {\kern 1pt} {\kern 1pt} [0,T]} ||{\varphi_t}(t)|{|_{{C^0}(\overline \Omega)}} \le R,\quad \quad {\rm{for some}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} R > 0.

Using the inverse estimate (31), we have ||φh(0)φ(0)||C0(Ω¯)C0hn2(||φh(0)φ(0)||L2(Ω)+||φ(0)Iφh(0)||L2(Ω))+C0hl||φ(0)||H2(Ω), \matrix{{||{\varphi^h}(0) - \varphi (0)|{|_{{C^0}(\overline \Omega)}} \le {C_0}{h^{- {n \over 2}}}(||{\varphi^h}(0) - \varphi (0)|{|_{{L^2}(\Omega)}} + ||\varphi (0) - I_\varphi^h(0)|{|_{{L^2}(\Omega)}})} \cr {+ {{C'}_0}{h^l}||\varphi (0)|{|_{{H^2}(\Omega)}},} \cr} where l is a real number in (0, 1) ensuring that H2(Ω) is a subset of C0,l(Ω). Thanks to Lemma 4, as well as equations (30) and (70), we obtain ||φh(0)φ(0)||C0(Ω¯)<(CC0h2n2+C0hl)||φ(0)||H2(Ω). ||{\varphi^h}(0) - \varphi (0)|{|_{{C^0}(\overline \Omega)}} < (C{C_0}{h^{2 - {n \over 2}}} + {C'_0}{h^l})||\varphi (0)|{|_{{H^2}(\Omega)}}.

Taking h small enough, we get ||φh(0)||C0(Ω¯)<R. ||{\varphi^h}(0)|{|_{{C^0}(\overline \Omega)}} < R.

We now assert that 𝒵 (0) ≤ Ch4, where 𝒵 is defined in Lemma 5. Hence Z(0)=θtφ(0)δt(0)1,h2. {\cal Z}(0) = \parallel \theta_t^\varphi (0) - {\delta_t}(0)\parallel_{- 1,h}^2.

We follow a similar approach to the proof in Lemma 5. Starting with equation (55) being valid at t = 0, we then substitute ϕ=DL1,h(θφt(0)δt(0)) \phi = D_L^{- 1,h}({\theta^\varphi}t(0) - \delta t(0)) into (54), yielding ((θtφ(0),DL1,h(θtφ(0)δt(0))))+((θw(0),DL1,h(θtφ(0)δt(0))))=((βtφ(0),DL1,h(θtφ(0)δt(0))))+α((θφ(0)+βφ(0),DL1,h(θtφ(0)δt(0)))). \matrix{{((\theta_t^\varphi (0),D_L^{- 1,h}(\theta_t^\varphi (0) - {\delta_t}(0)))) + ((\nabla {\theta^w}(0),\nabla D_L^{- 1,h}(\theta_t^\varphi (0) - {\delta_t}(0)))) =} \cr {- ((\beta_t^\varphi (0),D_L^{- 1,h}(\theta_t^\varphi (0) - {\delta_t}(0)))) + \alpha (({\theta^\varphi}(0) + {\beta^\varphi}(0),D_L^{- 1,h}(\theta_t^\varphi (0) - {\delta_t}(0)))).} \cr}

We subsequently use (70) to obtain ((θtφ(0),DL1,h(θtφ(0)δt(0))))=((βtφ(0),DL1,h(θtφ(0)δt(0)))). ((\theta_t^\varphi (0),D_L^{- 1,h}(\theta_t^\varphi (0) - {\delta_t}(0)))) = - ((\beta_t^\varphi (0),D_L^{- 1,h}(\theta_t^\varphi (0) - {\delta_t}(0)))).

Consequently, ||θtφ(0)δt(0)||1,h||βtφ(0)+δt(0)||1,hC||βtφ(0)+δt(0)||L2(Ω)Ch2||φt(0)||H2(Ω), ||\theta_t^\varphi (0) - {\delta_t}(0)|{|_{- 1,h}} \le ||\beta_t^\varphi (0) + {\delta_t}(0)|{|_{- 1,h}} \le C||\beta_t^\varphi (0) + {\delta_t}(0)|{|_{{L^2}(\Omega)}} \le C{h^2}||{\varphi_t}(0)|{|_{{H^2}(\Omega)}}, where we used Lemma 4, (50) and (53). Therefore, 𝒵 (0) ≤ Ch4, which validates our assertion.

In addition, Lemmas 4 and 5, combined with the estimation in (47) and the regular assumption regarding φ and w, yield the following inequality: Z(t)Ch4,forallt[0,Th]. {\cal Z}(t) \le C{h^4},\quad \quad {\rm{for}}\,{\rm{all}}{\kern 1pt} {\kern 1pt} t{\kern 1pt} {\kern 1pt} \in {\kern 1pt} [0,{T^h}].

This inequality, in particular, implies the subsequent result θφ(t)L2(Ω)Ch2,forallt[0,Th]. \parallel {\theta^\varphi}(t){\parallel_{{L^2}(\Omega)}} \le C{h^2},\quad \quad {\rm{for}}\,{\rm{all}}{\kern 1pt} \,{\kern 1pt} t{\kern 1pt} \in {\kern 1pt} [0,{T^h}].

In addition, arguing as in (71), we then deduce that sup||φh(t)φ(t)||C0(Ω¯)0,ash0. \sup ||{\varphi^h}(t) - \varphi (t)|{|_{{C^0}(\bar \Omega)}} \to 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{as}}{\kern 1pt} {\kern 1pt} {\kern 1pt} h \to 0.

Consequently, by choosing a sufficiently small value of h, we have Th = T . Also, Lemma 4, Lemma 5, and (47) collectively establish the results presented in our theorem.

Stability of the Backward Euler scheme

In this section, we examine the backward Euler scheme with respect to time. After showing that the functional energy decreases during time discretization, we can conclude that our scheme maintains stability. Our initial assumption is that the time step ηt > 0 remains constant.

The numerical scheme is as follows: ((φhnφhn1ηt,ϕ))=((v,ϕ))α((φhn,ϕ)), (({{\varphi_h^n - \varphi_h^{n - 1}} \over {\eta t}},\phi)) = - ((\nabla v,\nabla \phi)) - \alpha ((\varphi_h^n,\phi)), ((vhn,ψ))=1ε((f(φhn),ψ))+ε((φhn,ψ)), ((v_h^n,\psi)) = {1 \over \varepsilon}((f(\varphi_h^n),\psi)) + \varepsilon ((\nabla \varphi_h^n,\nabla \psi)), for all ϕ, ψVh.

In what follows, we show the existence, uniqueness, and stability of sequences ((φhn),(whn)) ((\varphi_h^n),(w_h^n)) .

Theorem 7

For every φh0Vh \varphi_h^0 \in {V^h} , there exist two sequences, (φhn) (\varphi_h^n) and (vhn) (v_h^n) , generated by equations (73)(74), which satisfy the following: J(φhn)+α2||φhn||2+12ηt||φhnφhn1||12J(φhn1)+α2||φhn1||2,foralln1. {\cal J}(\varphi_h^n) + {\alpha \over 2}||\varphi_h^n|{|^2} + {1 \over {2\eta t}}||\varphi_h^n - \varphi_h^{n - 1}||_{- 1}^2 \le {\cal J}(\varphi_h^{n - 1}) + {\alpha \over 2}||\varphi_h^{n - 1}|{|^2},{\kern 1pt} {\kern 1pt} {\rm{for}}\,{\rm{all}}{\kern 1pt} {\kern 1pt} {\kern 1pt} n \ge 1.

In addition, if ηt < ηt*, where ηt*=4εm \eta {t^*} = {{4\varepsilon} \over m} and m=1ε+ηtα22+εη2tα2Vol2(Ω) m = {1 \over \varepsilon} + {{\eta t{\alpha^2}} \over 2} + \varepsilon {\eta^2}t{\alpha^2}{\bf{Vo}}{{\bf{l}}^2}(\Omega) , then these sequences are uniquely defined.

Proof

Consider the following minimization problem: Πφ=infwVhΠh(w), {\Pi^\varphi} = \mathop {\inf}\limits_{w \in {V^h}} \;{\Pi^h}(w), where Πh(w)=J(w)+α2||w||2+12ηt||wφhn1||12. {\Pi^h}(w) = {\cal J}(w) + {\alpha \over 2}||w|{|^2} + {1 \over {2\eta t}}||w - \varphi_h^{n - 1}||_{- 1}^2.

We can see that Πh(w)ε2||φ||2+(c1ε+α2)||w||2+C. {\Pi^h}(w) \ge {\varepsilon \over 2}||\nabla \varphi |{|^2} + ({{{c_1}} \over \varepsilon} + {\alpha \over 2})||w|{|^2} + C.

Since Πh(.) is continuous, it follows that that there exists a solution to the variational problem (76). This solution satisfies Euler-Lagrange's equation ε((φ,ϕ))+1ε((f(φ),ϕ))+α((DL1,hφ,ϕ))+12ηt((φφhn1,ϕ))((ϕ,1))=0, \varepsilon ((\nabla \varphi,\nabla \phi)) + {1 \over \varepsilon}((f(\varphi),\phi)) + \alpha ((D_L^{- 1,h}\varphi,\phi)) + {1 \over {2\eta t}}((\varphi - \varphi_h^{n - 1},\phi)) - ((\phi,1)) = 0, for all ϕVh.

We set φhn=φ \varphi_h^n = \varphi and vhn=ϕDL1,h(1ηt(φφhn1)αφ) v_h^n = \phi - D_L^{- 1,h}({1 \over {\eta t}}(\varphi - \varphi_h^{n - 1}) - \alpha \varphi) , and we see that ((φhn),(whn)) ((\varphi_h^n),(w_h^n)) satisfies (73)(74). By construction, we have Jh(φhn)Jh(φhn1), {{\cal J}^h}(\varphi_h^n) \le {{\cal J}^h}(\varphi_h^{n - 1}), and as a result, we can derive (75).

To establish uniqueness, we consider κφ=(φhn)1(φhn)2 {\kappa^\varphi} = {(\varphi_h^n)^1} - {(\varphi_h^n)^2} and κv=(vhn)1(vhn)2 {\kappa^v} = {(v_h^n)^1} - {(v_h^n)^2} as the discrepancies between two solutions ((φhn)i,(whn)i) ({(\varphi_h^n)^i},{(w_h^n)^i}) (where i = 1, 2) of (73)(74) with respect to a given φhn1 \varphi_h^{n - 1} . Then, (κφ, κv) satisfies ((κφ,ϕ))=ηt((κv,ϕ))ηt.α((κφ,ϕ)), (({\kappa^\varphi},\phi)) = - \eta t((\nabla {\kappa^v},\nabla \phi)) - \eta t.\alpha (({\kappa^\varphi},\phi)), ((κv,ψ))=1ε((f((φhn))1)f((φhn)2),ψ))+ε((κφ,ψ)), (({\kappa^v},\psi)) = {1 \over \varepsilon}((f{((\varphi_h^n))^1}) - f({(\varphi_h^n)^2}),\psi)) + \varepsilon ((\nabla {\kappa^\varphi},\nabla \psi)), for all ϕ, ψVh.

By choosing φ = κv and ψ = κφ and subtracting the resulting equations, we obtain ηt||κv||2+||κφ||2+1εRe((f(φhn,1)f(φhn,2),κφ))ηt.α((κφ,κv))=0. \eta t||\nabla {\kappa^v}|{|^2} + \smallint ||\nabla {\kappa^\varphi}|{|^2} + {1 \over \varepsilon}Re((f(\varphi_h^{n,1}) - f(\varphi_h^{n,2}),{\kappa^\varphi})) - \eta t.\alpha (({\kappa^\varphi},{\kappa^v})) = 0.

Set φhn,1=z \varphi_h^{n,1} = z , φhn,2=z \varphi_h^{n,2} = z' in Proposition 3.1 of the reference [25], and observe that |Re((f(z)f(z),κφ))|c0Ω[|κφ|4+|z|2.|κφ|2+2Re(z¯κφ)]dx||κφ||2||κφ||2, \matrix{{|Re((f(z) - f(z'),{\kappa^\varphi}))| \ge {c_0}\int_\Omega [|{\kappa^\varphi}{|^4} + |z{|^2}.|{\kappa^\varphi}{|^2} + 2Re(\bar z{\kappa^\varphi})]dx - ||{\kappa^\varphi}|{|^2}} \cr {\ge - ||{\kappa^\varphi}|{|^2},} \cr} hence ηt||κv||2+ε||κφ||21ε||κφ||2+ηtα||κφ||.||κv||, \eta t||\nabla {\kappa^v}|{|^2} + \varepsilon ||\nabla {\kappa^\varphi}|{|^2} \le {1 \over \varepsilon}||{\kappa^\varphi}|{|^2} + \eta t\alpha ||{\kappa^\varphi}||.||{\kappa^v}||, which yields ηt||κv||2+ε||κφ||2(1ε+α2.ηt2)||κφ||2+ηt2||κv||2. \eta t||\nabla {\kappa^v}|{|^2} + \varepsilon ||\nabla {\kappa^\varphi}|{|^2} \le ({1 \over \varepsilon} + {{{\alpha^2}.\eta t} \over 2})||{\kappa^\varphi}|{|^2} + {{\eta t} \over 2}||{\kappa^v}|{|^2}.

Let now ϕ = ψ = Vol(Ω) in (79) and (80) and proceeding as above, we have κφηt.α.Vol(Ω)||κφ|| \langle {\kappa^\varphi}\rangle \le \eta t.\alpha.{\bf{Vol}}(\Omega)||{\kappa^\varphi}|| and κvkfε.Vol(Ω)||κφ||. \langle {\kappa^v}\rangle \le {{{k_f}} \over {\varepsilon.{\rm{Vol}}(\Omega)}}||{\kappa^\varphi}||.

Therefore, inequality (84) can be rewritten as ηt2||κv||H1(Ω)2+ε||κφ||H1(Ω)2(1ε+α2.(ηt)22+ε.(ηt)2t.α2.Vol2(Ω)+kf2ηt.ε2.Vol2(Ω))||κφ||2m||κφ||2. \matrix{{{{\eta t} \over 2}||{\kappa^v}||_{{H^1}(\Omega)}^2 + \varepsilon ||{\kappa^\varphi}||_{{H^1}(\Omega)}^2} \hfill \cr {\le ({1 \over \varepsilon} + {{{\alpha^2}.{{(\eta t)}^2}} \over 2} + \varepsilon.{{(\eta t)}^2}t.{\alpha^2}.{\bf{Vo}}{{\bf{l}}^2}(\Omega) + {{k_f^2} \over {\eta t.{\varepsilon^2}.{\bf{Vo}}{{\bf{l}}^2}(\Omega)}})||{\kappa^\varphi}|{|^2}} \hfill \cr {\le m||{\kappa^\varphi}|{|^2}.} \hfill \cr}

Next, by choosing ϕ = m.κφ in (79), we infer that m||κφ||2+m.α.ηt||κφ||2=m.ηt((κφ,κφ))ηt2||κv||2+m2ηt2||κv||. m{||{\kappa^\varphi}||}^{2} + m.\alpha.\eta t{||{\kappa^\varphi}||}{^2} = - m.\eta t((\nabla {\kappa^\varphi},\nabla {\kappa^\varphi})) \le {{\eta t} \over 2}||\nabla {\kappa^v}|{|^2} + {{{m^2}\eta t} \over 2}||\nabla {\kappa^v}||.

We then deduce the following inequality, (εm2ηt4)||κφ||H1(Ω)20. (\varepsilon - {{{m^2}\eta t} \over 4})||{\kappa^\varphi}||_{{H^1}(\Omega)}^2 \le 0.

At the end, since ((θφ, 1)) = 0, the smallness assumption on ηt implies that κφ = 0, and using (3.61) we can see that κw = 0.

Conclusions

In this article, we proposed a complex version of the Cahn-Hilliard-Oono type equation, with applications in grayscale phase separation. Instead of considering the Cahn-Hilliard-Oono system for long interaction phase separation as proposed in [26], we suggested examining a multi-phase metal treated as grayscale, where the concentration of each phase ranges between 0 and 1. We utilized the complex version of the Cahn-Hilliard equation, revealing that the real part of the solution represents the resulting separation.

We established the existence of a unique solution for the stationary problem using Schauder's fixed point theorem. Furthermore, we considered a numerical scheme based on finite element space discretization in space and Backward Euler discretization in time. After deriving error estimates for the semi-discrete solution, we demonstrated the convergence of the semi-discrete solution to the continuous one. Additionally, we proved the stability of the backward Euler scheme, enabling convergence of the fully discrete scheme to the continuous problem.

It is worth noting that numerical simulations are crucial for showcasing the efficiency of the model under investigation in future works. Furthermore, exploring the mathematical aspects of the evolution problem (well-posedness, attractors, convergence) will be a significant focus in future studies. Moreover, for long interaction phase separation and to streamline numerical simulations, we can use the complex version of the Cahn-Hilliard-Oono equation.

Declarations
Conflict of interest 

Not applicable.

Funding

Not applicable.

Author's contribution

H.F.-Conception and Design, Methodology, Investigation, Drafting and Editing. M.F.-Conception and Design, Investigation, Drafting and Editing. W.S.-Investigation, Drafting and Editing. Y.A.-Investigation, Drafting and Editing. All authors reviewed the results and approved the final version of the manuscript.

Acknowledgement

The authors wish to thank the referees for their careful reading of the article and useful comments.

Data availability statement

All data that support the findings of this study are included within the article.

Using of AI tools

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

eISSN:
2956-7068
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Computer Sciences, other, Engineering, Introductions and Overviews, Mathematics, General Mathematics, Physics