Zacytuj

Introduction

The qualification of approximation for linear positive operators has a significant impact on the approximation theory. Many researchers have studied in this field [1, 2, 3, 4, 5, 6, 7, 8, 9]. However, Bernstein operators and its generalizations have a significant status in Computer-Aided Geometric Design (CAGD) to introduce surfaces and curves and have been investigated in many papers [10, 11, 12]. Some application areas include the numerical solutions of partial differential equations, CAGD, 3D modeling.

In recent years, many articles have centered on the subject of approximating continuous functions with q-Calculus [3, 4, 5, 6, 7, 8, 9]. Initially, Lupas [3] and Philips [4] introduced the q-Bernstein operators generalization and examined approximation qualifications of these operators. Then, Derriennic introduced many qualifications of the q-Durrmeyer operators in [8].

In [13], using discrete linear approximation operators to approximate the nonlinear positive operators were introduced. The operators of max-product type were first used to describe linear operators that used maximum as the name of the sum and provided a Jackson-type error estimate with regard to the continuity modulus [14, 15, 16, 17, 18, 19, 20, 21, 22]. Since the max-product kind of approximation theory is a very rich and useful phenomena of approximating continuous functions, researchers have turned to this new field in recent years. For another approximation theory studies including univariate and bivariate type of operators can be seen via [23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

In [2], the nonlinear Meyer-König and Zeller operators of max-product type were first described from the linear counterpart by using the maximum operator in place of the sum operator, as below Zn(M)(f)(v)=i=0sn,i(v)f(in+i)i=0sn,i(v), Z_n^{(M)}\left(f \right)(v) = {{\vee _{i = 0}^\infty {s_{n,i}}(v)f\left({{i \over {n + i}}} \right)} \over {\vee _{i = 0}^\infty {s_{n,i}}(v)}}, where sn,i(v)=(n+ii)(v)i {s_{n,i}}(v) = \left({\matrix{{n + i} \cr i \cr}} \right){\left(v \right)^i} and i=0sn,i(v)=supi{sn,i(v)} \mathop \vee \nolimits_{i = 0}^\infty {s_{n,i}}(v) = \mathop {\sup}\nolimits_{i \in {\rm{\mathbb N}}} \left\{{{s_{n,i}}(v)} \right\} .

In [17], Bede et al. proved that Zn(M) Z_n^{(M)} operators are a well defined nonlinear operator for all x ∈ [0,1] and Zn(M) Z_n^{(M)} operators have approximation conclusions and shape preserving properties. According to the usual Meyer-König and Zeller operators, the max-product kind of these operators also preserve approximation properties over the class of continuous functions. Additionally, Zn(M) Z_n^{(M)} operators are continuous for any f > 0 and preserve the quasi-convexity of f on [0,1] and the monocity in [17].

Preliminaries

In this study, we define nonlinear q-Meyer-König and Zeller operators of max-product type and give the approximation qualifications of these operators. Firstly, we indicate some basic definition and general notations. Now, let's consider the operations “∨” (maximum) and “.” (product) over the max-product algebra (ℝ+,∨,·). Assume I ⊂ ℝ is a finite or infinite interval, and set A:={u:I+;ucontinousandboundedonI}. {\rm{\mathbb A}}: = \left\{{u:I \to {{\rm{\mathbb R}}_ +};u\;continous\;and\;bounded\;on\;I} \right\}. The max-product type of discrete approximation operators’ standard form is defined as Ln(u)(t)=r=0nKn(t,tr)u(tr),Ln(u)(t)=r=0Kn(t,tr)u(tr), {L_n}(u)(t) = \mathop \vee \limits_{r = 0}^n {K_n}(t,{t_r})u({t_r}),\;\;\;{L_n}(u)(t) = \mathop \vee \limits_{r = 0}^\infty {K_n}(t,{t_r})u({t_r}), where n ∈ ℕ, u ∈ 𝔸, Kn(.,tr) ∈ 𝔸 and trI, for all r. The pseudo-linearity property is verified by these nonlinear positive operators as below; for u,w : I → ℝ+ Ln(ζ.uγ.w)(t)=ζ.Ln(u)(t)γ.Ln(w)(t), {L_n}(\zeta.u \vee \gamma.w)(t) = \zeta.{L_n}(u)(t) \vee \gamma.{L_n}(w)(t), which ζ, γ ∈ ℝ+. Also, the operators of max-product kind are positive homogenous, i.e. ∀λ ≥ 0, Ln(λu) = λLn(u) (for the other details, one can see [17]).

Lemma 1

For n ∈ ℕ, let take Ln : 𝔸 → 𝔸 be a sequence of operators verifying the below circumstances:

For all u,w ∈ 𝔸, Ln (u + w) ≤ Ln (u) + Ln (w),

For all u,w ∈ 𝔸 and tI, |Ln (u)(t) − Ln (w)(t)| ≤ Ln (|uw|)(t).

[18] provides proof for the Lemma.

Corollary 2

Let's suppose that the sequence Ln provides Ln (e0) = e0 for all n ∈ ℕ in addition the conditions given Lemma 1 [18]. Then for all u ∈ 𝔸 and tI, we get |u(t)Ln(u)(t)|[1δLn(ηt)(t)+1]ω1(u;δ), \left| {u(t) - {L_n}\left(u \right)(t)} \right| \le \left[ {{1 \over \delta}{L_n}\left({{\eta _t}} \right)(t) + 1} \right]{\omega _1}\left({u;\delta} \right), where δ > 0, ηt(a) = |at| for all a,tI and ω1 (u;δ) = max {u(t) − u(s)|;t,sI,|ts| ≤ δ}.

Let's give some basic description of the q-calculus. For the parameter q > 0 and m ∈ ℕ, one gives the q-integer [m]q as below [m]q={1qm1qifq1mifq=1,[0]q=0, {[m]_q} = \left\{{\matrix{{{{1 - {q^m}} \over {1 - q}}} & {{\rm{if}}} & {q \ne 1} \cr m & {{\rm{if}}} & {q = 1} \cr}} \right.,\;\;\;{[0]_q} = 0, and q-factorial [m]q! as [m]q!=[1]q[2]q[m]qformand[0]q!=1. {[m]_q}! = {[1]_q}{[2]_q} \cdots {[m]_q}\quad {\rm{for}}\quad m \in {\rm{\mathbb N}}\quad {\rm{and}}\quad {[0]_q}! = 1. For integers 0 ≤ lm, q-binomial is introduced as: [ml]q=[m]q![l]q![ml]q!. {\left[ {\matrix{m \cr l \cr}} \right]_q} = {{{{[m]}_q}!} \over {{{[l]}_q}!{{[m - l]}_q}!}}. Finally, let q-binomial coefficient and 1 ≤ im − 1, one get q-Pascal Rules as follows [mi]q=[m1i1]q+qi[m1i]q,[mi]q=qmi[m1i1]q+[m1i]q. {\left[ {\matrix{m \cr i \cr}} \right]_q} = {\left[ {\matrix{{m - 1} \cr {i - 1} \cr}} \right]_q} + {q^i}{\left[ {\matrix{{m - 1} \cr i \cr}} \right]_q},{\left[ {\matrix{m \cr i \cr}} \right]_q} = {q^{m - i}}{\left[ {\matrix{{m - 1} \cr {i - 1} \cr}} \right]_q} + {\left[ {\matrix{{m - 1} \cr i \cr}} \right]_q}.

Construction of the operators

In this section, we define nonlinear q-Meyer-König and Zeller operators of max-product type as below: Zn(M)(f)(ς;q)=ζ=0tn,ζ(ς,q)f([ζ]q[n+ζ]q)ζ=0tn,ζ(ς,q),ς[0,1), Z_n^{(M)}\left(f \right)(\varsigma ;q) = {{\mathop \vee \limits_{\zeta = 0}^\infty {t_{n,\zeta}}(\varsigma,q)f\left({{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}}} \right)} \over {\mathop \vee \limits_{\zeta = 0}^\infty {t_{n,\zeta}}(\varsigma,q)}},\;\varsigma \in [0,1), which tn,ζ(ς,q)=[n+ζζ]q(ς)ζ {t_{n,\zeta}}(\varsigma,q) = {\left[ {\matrix{{n + \zeta} \cr \zeta \cr}} \right]_q}{\left(\varsigma \right)^\zeta} . Here, the function f : [0,1] → ℝ+ is continuous.

The operators given in (2) are positive and continuous on the interval [0,1] for a continuous function f : [0,1] → ℝ+. Indeed, fC+([0,1]) and tn,ζ(ς,q) is positive for all [0,1], we have our operator being positive. For the nonlinearity of Zn(M)(f)(ς;q) Z_n^{(M)}\left(f \right)(\varsigma ;q) for any f, hC+([0,1]), we obtain Zn(M)(f+h)(ς;q)Zn(M)(f)(ς;q)+Zn(M)(h)(ς;q) Z_n^{(M)}\left({f + h} \right)(\varsigma ;q) \le Z_n^{(M)}\left(f \right)(\varsigma ;q) + Z_n^{(M)}\left(h \right)(\varsigma ;q) . Also, the pseudo-linearity property is provided by these operators, and these operators are positive homogenous. Also, we handily show that Zn(M)(f;q)(0)f(0)=Zn(M)(f;q)(1)f(1)=0 Z_n^{(M)}\left({f;q} \right)(0) - f\left(0 \right) = Z_n^{(M)}\left({f;q} \right)(1) - f\left(1 \right) = 0 for any n consider that in the indications, proofs and expressions of all approximation conclusions in fact we may assume that 0 < ς < 1. Additionally, we provide an error estimate for the operators Zn(M)(f)(ς;q) Z_n^{(M)}\left(f \right)(\varsigma ;q) described by (2) with regard to the modulus of continuity.

For each ζ,γ ∈ {0,1,2,} and x[[γ]q[n+γ]q,[γ+1]q[n+γ+1]q] x \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right] , we obtained in the following structure Pζ,n,γ(ς,q)=tn,ζ(ς,q)|[ζ]q[n+ζ]qς|tn,γ(ς,q),pζ,n,γ(ς,q)=tn,ζ(ς,q)tn,γ(ς,q). \matrix{{{P_{\zeta,n,\gamma}}(\varsigma,q) = {{{t_{n,\zeta}}(\varsigma,q)\left| {{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \right|} \over {{t_{n,\gamma}}(\varsigma,q)}},} \cr {{p_{\zeta,n,\gamma}}(\varsigma,q) = {{{t_{n,\zeta}}(\varsigma,q)} \over {{t_{n,\gamma}}(\varsigma,q)}}.} \cr} It follows that if ζj + 1, then Pζ,n,γ(ς,q)=tn,ζ(ς,q)([ζ]q[n+ζ]qς)tn,γ(ς,q), {P_{\zeta,n,\gamma}}(\varsigma,q) = {{{t_{n,\zeta}}(\varsigma,q)\left({{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \right)} \over {{t_{n,\gamma}}(\varsigma,q)}}, and if ζγ, then Pζ,n,γ(ς,q)=tn,ζ(ς,q)(ς[ζ]q[n+ζ]q)tn,γ(ς). {P_{\zeta,n,\gamma}}(\varsigma,q) = {{{t_{n,\zeta}}(\varsigma,q)\left({\varsigma - {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}}} \right)} \over {{t_{n,\gamma}}(\varsigma)}}.

Lemma 3

For all ζ, γ ∈ {0,1,2,⋯} and ς[[γ]q[n+γ]q,[γ+1]q[n+γ+1]q] \varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right] we obtain pζ,n,γ(ς,q)1. {p_{\zeta ,n,\gamma }}\left( {\varsigma ,q} \right) \le 1.

Proof

We have two cases for the proof of the above lemma: 1) ζγ, 2) ζγ. Case 1: Let ζγ . From the definition pζ,n,γ (ς, q) given (3), since the function 1ς \left[{1 \over \varsigma} is nonincreasing on [[γ]q[n+γ]q,[γ+1]q[n+γ+1]q] \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right] and [γ + 1]q ≤ [ζ + 1]q, we obtain pζ,n,γ(ς)pζ+1,n,γ(ς)=[ζ+1]q[n+ζ+1]q1ς[ζ+1]q[n+ζ+1]q[n+γ+1]q[γ+1]q=1qn+γ+11qn+ζ+11. {{{p_{\zeta,n,\gamma}}(\varsigma)} \over {{p_{\zeta + 1,n,\gamma}}(\varsigma)}} = {{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}} \cdot {1 \over \varsigma} \ge {{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}} \cdot {{{{[n + \gamma + 1]}_q}} \over {{{[\gamma + 1]}_q}}} = {{1 - {q^{n + \gamma + 1}}} \over {1 - {q^{n + \zeta + 1}}}} \ge 1. which indicates pγ,n,γ(ς,q)pγ+1,n,γ(ς,q)pγ+2,n,γ(ς,q). {p_{\gamma,n,\gamma}}(\varsigma,q) \ge {p_{\gamma + 1,n,\gamma}}(\varsigma,q) \ge {p_{\gamma + 2,n,\gamma}}(\varsigma,q) \ge \cdots.

Case 2: Let ζγ. pζ,n,γ(ς)pζ1,n,γ(ς)=[n+ζ]q[ζ]qς[n+ζ]q[ζ]q[γ]q[n+γ]q1. {{{p_{\zeta,n,\gamma}}(\varsigma)} \over {{p_{\zeta - 1,n,\gamma}}(\varsigma)}} = {{{{[n + \zeta ]}_q}} \over {{{[\zeta ]}_q}}} \cdot \varsigma \ge {{{{[n + \zeta ]}_q}} \over {{{[\zeta ]}_q}}} \cdot {{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}} \ge 1. which implies pγ,n,γ(ς,q)pγ1,n,γ(ς,q)pγ2,n,γ(ς,q)p0,n,γ(ς,q). {p_{\gamma,n,\gamma}}(\varsigma,q) \ge {p_{\gamma - 1,n,\gamma}}(\varsigma,q) \ge {p_{\gamma - 2,n,\gamma}}(\varsigma,q) \ge \cdots \ge {p_{0,n,\gamma}}(\varsigma,q). Since pγ,n,γ (ς,q) = 1, the proof of lemma is finished.

Lemma 4

Let q ∈ (0,1), γ ∈ {1,2,⋯} and ς[[γ]q[n+γ]q,[γ+1]q[n+γ+1]q] \varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right] .

(i) If ζ ∈ {γ + 1,⋯} is such that [γ]q[ζ]q[ζ+1]q+qγ[γ+1]q+[γ]q[γ+1]q[n]q {[\gamma ]_q} \le {[\zeta ]_q} - \sqrt {{{[\zeta + 1]}_q} + {{{q^\gamma}{{[\gamma + 1]}_q} + {{[\gamma ]}_q}{{[\gamma + 1]}_q}} \over {{{[n]}_q}}}} , then Pζ,n,γ (ς,q) ≥ Pζ+1,n,γ (ς, q).

(ii) If ζ ∈ {0,1⋯,γ} is such that [γ]q[ζ]q+[ζ]q+[γ]q2[n]q {[\gamma ]_q} \le {[\zeta ]_q} + \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} , then Pζ,n,γ (ς) ≥ Pζ−1,n,γ (ς).

Proof

(i) Let ζ∈ {γ + 1,γ + 2,⋯} with [γ]q[ζ]q[ζ+1]q+qγ[γ+1]q+[γ]q[γ+1]q[n]q {[\gamma ]_q} \le {[\zeta ]_q} - \sqrt {{{[\zeta + 1]}_q} + {{{q^\gamma}{{[\gamma + 1]}_q} + {{[\gamma ]}_q}{{[\gamma + 1]}_q}} \over {{{[n]}_q}}}} . So, we obtain Pζ,n,γ(ς,q)Pζ+1,n,γ(ς,q)=[ζ+1]q[n+ζ+1]q1ς[ζ]q[n+ζ]qς[ζ+1]q[n+ζ+1]qx. {{{P_{\zeta,n,\gamma}}(\varsigma,q)} \over {{P_{\zeta + 1,n,\gamma}}(\varsigma,q)}} = {{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}} \cdot {1 \over \varsigma} \cdot {{{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \over {{{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}} - x}}. Since the function h(ς)=1ς[ζ]q[n+ζ]qς[ζ+1]q[n+ζ+1]qς h(\varsigma) = {1 \over \varsigma} \cdot {{{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \over {{{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}} - \varsigma}} is nonincreasing, it follows that h(ς)h([γ+1]q[n+γ+1]q)=[n+γ+1]q[γ+1]q[ζ]q[n+ζ]q[γ+1]q[n+γ+1]q[ζ+1]q[n+ζ+1]q[γ+1]q[n+γ+1]q=[n+γ+1]q[γ+1]q[n+ζ+1]q[n+ζ]q[ζ]q[γ+1]q[ζ+1]q[γ+1]q. \matrix{{h(\varsigma)} \hfill & {\ge h\left({{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right) = {{{{[n + \gamma + 1]}_q}} \over {{{[\gamma + 1]}_q}}} \cdot {{{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - {{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \over {{{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}} - {{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}}}} \hfill \cr {} \hfill & {= {{{{[n + \gamma + 1]}_q}} \over {{{[\gamma + 1]}_q}}}{{{{[n + \zeta + 1]}_q}} \over {{{[n + \zeta ]}_q}}}{{{{[\zeta ]}_q} - {{[\gamma + 1]}_q}} \over {{{[\zeta + 1]}_q} - {{[\gamma + 1]}_q}}}.} \hfill \cr} Hence, we get Pζ,n,γ(ς,q)Pζ+1,n,γ(ς,q)[n+γ+1]q[γ+1]q[ζ+1]q[n+ζ]q[ζ]q[γ+1]q[ζ+1]q[γ+1]q {{{P_{\zeta,n,\gamma}}(\varsigma,q)} \over {{P_{\zeta + 1,n,\gamma}}(\varsigma,q)}} \ge {{{{[n + \gamma + 1]}_q}} \over {{{[\gamma + 1]}_q}}}{{{{[\zeta + 1]}_q}} \over {{{[n + \zeta ]}_q}}}{{{{[\zeta ]}_q} - {{[\gamma + 1]}_q}} \over {{{[\zeta + 1]}_q} - {{[\gamma + 1]}_q}}}{\;_ \cdot} By taking the hypothesis [γ]q[ζ]q[ζ+1]q+qγ[γ+1]q+[γ]q[γ+1]q[n]q {[\gamma ]_q} \le {[\zeta ]_q} - \sqrt {{{[\zeta + 1]}_q} + {{{q^\gamma}{{[\gamma + 1]}_q} + {{[\gamma ]}_q}{{[\gamma + 1]}_q}} \over {{{[n]}_q}}}} which indicates that [n+γ+1]q[ζ+1]q([ζ]q[γ+1]q)[γ+1]q[n+ζ]q([ζ+1]q[γ+1]q), {[n + \gamma + 1]_q}{[\zeta + 1]_q}\left({{{[\zeta ]}_q} - {{[\gamma + 1]}_q}} \right) \ge {[\gamma + 1]_q}{[n + \zeta ]_q}\left({{{[\zeta + 1]}_q} - {{[\gamma + 1]}_q}} \right), we obtain Pζ,n,γ(ς,q)Pζ+1,n,γ(ς,q)1. {{{P_{\zeta,n,\gamma}}(\varsigma,q)} \over {{P_{\zeta + 1,n,\gamma}}(\varsigma,q)}} \ge 1.

(ii) Let ζ ∈ {0,1,⋯,γ} and [γ]q[ζ]q+[ζ]q+[γ]q2[n]q {[\gamma ]_q} \le {[\zeta ]_q} + \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} . So, we have Pζ,n,γ(ς)Pζ1,n,γ(ς)=[n+ζ]q[ζ]qςς[ζ]q[n+ζ]qς[ζ1]q[n+ζ1]q. {{{P_{\zeta,n,\gamma}}(\varsigma)} \over {{P_{\zeta - 1,n,\gamma}}(\varsigma)}} = {{{{[n + \zeta ]}_q}} \over {{{[\zeta ]}_q}}} \cdot \varsigma \cdot {{\varsigma - {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}}} \over {\varsigma - {{{{[\zeta - 1]}_q}} \over {{{[n + \zeta - 1]}_q}}}}}. Then, since the function r(ς)=[n+ζ]q[ζ]qςς[ζ]q[n+ζ]qς[ζ1]q[n+ζ1]q r(\varsigma) = {{{{[n + \zeta ]}_q}} \over {{{[\zeta ]}_q}}} \cdot \varsigma \cdot {{\varsigma - {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}}} \over {\varsigma - {{{{[\zeta - 1]}_q}} \over {{{[n + \zeta - 1]}_q}}}}} is nondecreasing on ς[[γ]q[n+γ]q,[γ+1]q[n+γ+1]q] \varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right] , we get r(ς)r([γ]q[n+γ]q)=[n+ζ1]q[ζ]q[γ]q[n+γ]q[n+ζ]q[γ]q[ζ]q[n+γ]q[γ]q[n+ζ1]q[ζ1]q[n+γ]q[n+ζ1]q[γζ+1]q[γ]q[ζ]q[γζ]q[n+γ]q. \matrix{{r(\varsigma)} \hfill & {\ge r\left({{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}}} \right) = {{{{[n + \zeta - 1]}_q}} \over {{{[\zeta ]}_q}}} \cdot {{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}} \cdot {{{{[n + \zeta ]}_q}{{[\gamma ]}_q} - {{[\zeta ]}_q}{{[n + \gamma ]}_q}} \over {{{[\gamma ]}_q}{{[n + \zeta - 1]}_q} - {{[\zeta - 1]}_q}{{[n + \gamma ]}_q}}}} \hfill \cr {} \hfill & {\ge {{{{[n + \zeta - 1]}_q}} \over {{{[\gamma - \zeta + 1]}_q}}} \cdot {{{{[\gamma ]}_q}} \over {{{[\zeta ]}_q}}} \cdot {{{{[\gamma - \zeta ]}_q}} \over {{{[n + \gamma ]}_q}}}.} \hfill \cr} Since the hypothesis [γ]q[ζ]q+[ζ]q+[γ]q2[n]q {[\gamma ]_q} \le {[\zeta ]_q} + \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} , we easily obtain P^ζ,n,γ(ς)P^ζ1,n,γ(ς)1. {{{{\widehat P}_{\zeta,n,\gamma}}(\varsigma)} \over {{{\widehat P}_{\zeta - 1,n,\gamma}}(\varsigma)}} \ge 1. Therefore, we demonstrate the lemma.

Lemma 5

Let's indicate tn,ζ(ς,q)=[n+ζζ]qςζ {t_{n,\zeta}}(\varsigma,q) = {\left[ {\matrix{{n + \zeta} \cr \zeta \cr}} \right]_q}{\varsigma ^\zeta} , q ∈ (0,1), γ ∈ {0, 1, 2, …} and for all ς[[γ]q[n+γ]q,[γ+1]q[n+γ+1]q] \varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right] we get ζ=0ntn,ζ(ς,q)=tn,γ(ς,q). \mathop \vee \limits_{\zeta = 0}^n {t_{n,\zeta}}(\varsigma,q) = {t_{n,\gamma}}(\varsigma,q).

Proof

Primarily, we demonstrate that 0 ≤ ζ and for fixed n ∈ ℕ, we get 0tn,ζ+1(ς,q)tn,ζ(ς,q)ifandonlyifς[0,[ζ+1]q[n+ζ+1]q]. 0 \le {t_{n,\zeta + 1}}(\varsigma,q) \le {t_{n,\zeta}}(\varsigma,q)\quad {\rm{if}}\,{\rm{and}}\,{\rm{only}}\,{\rm{if}}\quad \varsigma \in \left[ {0,{{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}}} \right]. Let's estimate the following inequality 0[n+ζ+1ζ+1]qςζ+1[n+ζζ]qςζ, 0 \le {\left[ {\matrix{{n + \zeta + 1} \cr {\zeta + 1} \cr}} \right]_q}{\varsigma ^{\zeta + 1}} \le {\left[ {\matrix{{n + \zeta} \cr \zeta \cr}} \right]_q}{\varsigma ^\zeta}, after some simplifications by using q-Pascal rules given in (1), the previous inequality can be reduced to 0ς[ζ+1]q[n+ζ+1]q. 0 \le \varsigma \le {{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}}. Therefore, if we take ζ = 0,1,⋯,n in the inequality above, we get tn,1(ς,q)tn,0(ς,q),ifandonlyifς[0,1[n+1]q],tn,2(ς,q)tn,1(ς,q),ifandonlyifς[0,[2]q[n+2]q],tn,3(ς,q)tn,2(ς,q),ifandonlyifς[0,[3]q[n+3]q], \matrix{{{t_{n,1}}(\varsigma,q) \le {t_{n,0}}(\varsigma,q),} \hfill & {\quad {\rm{if}}\,{\rm{and}}\,{\rm{only}}\,{\rm{if}}\quad \varsigma \in \left[ {0,{1 \over {{{[n + 1]}_q}}}} \right],} \hfill \cr {{t_{n,2}}(\varsigma,q) \le {t_{n,1}}(\varsigma,q),} \hfill & {\quad {\rm{if}}\,{\rm{and}}\,{\rm{only}}\,{\rm{if}}\quad \varsigma \in \left[ {0,{{{{[2]}_q}} \over {{{[n + 2]}_q}}}} \right],} \hfill \cr {{t_{n,3}}(\varsigma,q) \le {t_{n,2}}(\varsigma,q),} \hfill & {\quad {\rm{if}}\,{\rm{and}}\,{\rm{only}}\,{\rm{if}}\quad \varsigma \in \left[ {0,{{{{[3]}_q}} \over {{{[n + 3]}_q}}}} \right],} \hfill \cr} and tn,ζ+1(ς,q)tn,ζ(ς,q),ifandonlyifς[0,[ζ+1]q[n+ζ+1]q], {t_{n,\zeta + 1}}(\varsigma,q) \le {t_{n,\zeta}}(\varsigma,q),\quad {{\rm{if}}\,{\rm{and}}\,{\rm{only}}\,{\rm{if}}}\quad \varsigma \in \left[ {0,{{{{[\zeta + 1]}_q}} \over {{{[n + \zeta + 1]}_q}}}} \right], and so on. The result of all these inequalities is ifς[0,1[n+1]q]thentn,ζ(ς,q)tn,0(ς,q),forallζ=0,1,,n;ifς[1[n+1]q,[2]q[n+2]q]thentn,ζ(ς,q)tn,1(ς,q),forallζ=0,1,,n;ifς[[2]q[n+2]q,[3]q[n+3]q]thentn,ζ(ς,q)tn,2(ς,q),forallζ=0,1,,n; \matrix{{if\quad} \hfill & {\varsigma \in \left[ {0,{1 \over {{{[n + 1]}_q}}}} \right]then\quad {t_{n,\zeta}}(\varsigma,q) \le {t_{n,0}}(\varsigma,q),\;forall\;\zeta = 0,1, \cdots,n;} \hfill \cr {{\rm{if}}\quad} \hfill & {\varsigma \in \left[ {{1 \over {{{[n + 1]}_q}}},{{{{[2]}_q}} \over {{{[n + 2]}_q}}}} \right]{\rm{then}}\quad {t_{n,\zeta}}(\varsigma,q) \le {t_{n,1}}(\varsigma,q),\;{\rm{for}}\,{\rm{all}}\;\zeta = 0,1, \cdots,n;} \hfill \cr {{\rm{if}}\quad} \hfill & {\varsigma \in \left[ {{{{{[2]}_q}} \over {{{[n + 2]}_q}}},{{{{[3]}_q}} \over {{{[n + 3]}_q}}}} \right]{\rm{then}}\quad {t_{n,\zeta}}(\varsigma,q) \le {t_{n,2}}(\varsigma,q),\;{\rm{for}}\,{\rm{all}}\;\zeta = 0,1, \cdots,n;} \hfill \cr} and ifς[[γ]q[n+γ]q,[γ+1]q[n+γ+1]q]thentn,ζ(ς,q)tn,γ(ς,q),forallζ=0,1,,n, {\rm{if}}\quad \varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right]\;{\rm{then}}\quad {t_{n,\zeta}}(\varsigma,q) \le {t_{n,\gamma}}(\varsigma,q),\;{\rm{for}}\,{\rm{all}}\;\zeta = 0,1, \cdots,n, which completes the proof.

Approximation degree of Zn(M)(f)(x;q) Z_n^{(M)}(f)(x;q)

The Shisha-Mond theorem, which is applicable to nonlinear max-product kind operators and is presented in [13], is used in this section to provide an error estimate for the operators Zn(M)(f)(ς;q) Z_n^{(M)}(f)(\varsigma ;q) which is defined in (2), with regard to the modulus of continuity.

Theorem 6

Let's q ∈ (0,1) and the function f is a bounded and continuous on [0,1]. Then, we have |Zn(M)(f)(ς;q)f(ς)|18ω1(f;(1ς)ς[n]q), \left| {Z_n^{(M)}(f)(\varsigma ;q) - f(\varsigma)} \right| \le 18{\omega _1}\left({f;{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}} \right), where n ≥ 4, ς ∈ [0,1] and ω1 ( f ;δ) = sup{|f (ς) − f (ζ)|;ς, ζ∈ [0,1],|ςζ| ≤ δ}.

Proof

Since the max-product Meyer-König and Zeller operators based on q-integers supply the conditions in Corollary 2 and we get the following |Zn(M)(f)(ς;q)f(ς)|(1+1δnZn(M)(ης,ς;q))ω1(f;δn), \left| {Z_n^{(M)}(f)(\varsigma ;q) - f(\varsigma)} \right| \le \left({1 + {1 \over {{\delta _n}}}Z_n^{(M)}({\eta _\varsigma},\varsigma ;q)} \right){\omega _1}\left({f;{\delta _n}} \right), where ης (t) = |tς|. Estimation of the following term is enough for the proof of lemma: Zn(M)(ης,ς;q)=ζ=0tn,ζ(ς,q)|[ζ]q[n+ζ]qς|ζ=0tn,γ(ς,q). Z_n^{(M)}\left({{\eta _\varsigma},\varsigma ;q} \right) = {{\vee _{\zeta = 0}^\infty {t_{n,\zeta}}(\varsigma,q)\left| {{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \right|} \over {\vee _{\zeta = 0}^\infty {t_{n,\gamma}}(\varsigma,q)}}. Let's assume that ς[[γ]q[n+γ]q,ζn[γ+1]q[n+γ+1]q] \varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{\zeta _n}{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right] , where γ ∈ {0,1,⋯} is fixed and arbitrary. From Lemma 5, we get Zn(M)(ης,ς;q)=ζ=0Pζ,n,γ(ς,q). Z_n^{(M)}\left({{\eta _\varsigma},\varsigma ;q} \right) = \mathop \vee \limits_{\zeta = 0}^\infty {P_{\zeta,n,\gamma}}(\varsigma,q). Firstly, for γ = 0 we obtain Zn(M)(ης,ς;q)[2](1ς)ς[n]q Z_n^{(M)}\left({{\eta _\varsigma},\varsigma ;q} \right) \le {{[2](1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}} for all ς[0,1[n+1]q] \varsigma \in \left[ {0,{1 \over {{{[n + 1]}_q}}}} \right] , so we can claim that γ = {1,2,⋯}.

Indeed, for each Pζ,n,γ (ς, q) we determine an upper estimate, for γ = 0, ς[0,1[n+1]q] \varsigma \in \left[ {0,{1 \over {{{[n + 1]}_q}}}} \right] and ζ ∈ {0,1,⋯,n}. Besides, Lemma 4(i) which indicates that for ζ ≥ 2 one gets Pζ,n,0(ς, q) ≥ Pζ+1,n,0(ς, q) which means that Zn(M)(ης,ς;q)=maxζ{0,1,2}{Pζ,n,0(ς,q)},ς[0,1[n+1]q] Z_n^{(M)}\left({{\eta _\varsigma},\varsigma ;q} \right) = ma{x_{\zeta \in \left\{{0,1,2} \right\}}}\left\{{{P_{\zeta,n,0}}(\varsigma,q)} \right\},\varsigma \in \left[ {0,{1 \over {{{[n + 1]}_q}}}} \right] . For ζ= 0, we have Pζ,n,0(ς,q)=ς=ςςς1[n+1]qς1[n]q(1ς)ς1[n]q11ς(1ς)ς1[n]q[n+1]q[n]q[2](1ς)ς[n]q. \matrix{{{P_{\zeta,n,0}}(\varsigma,q)} \hfill & {= \varsigma = \sqrt \varsigma \cdot \sqrt \varsigma \le \sqrt \varsigma \cdot {1 \over {\sqrt {{{[n + 1]}_q}}}} \le \sqrt \varsigma \cdot {1 \over {\sqrt {{{[n]}_q}}}}} \hfill \cr {} \hfill & {\le (1 - \varsigma)\sqrt \varsigma \cdot {1 \over {\sqrt {{{[n]}_q}}}}{1 \over {1 - \varsigma}} \le (1 - \varsigma)\sqrt \varsigma \cdot {1 \over {\sqrt {{{[n]}_q}}}}{{{{[n + 1]}_q}} \over {{{[n]}_q}}}} \hfill \cr {} \hfill & {\le {{[2](1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}.} \hfill \cr} For ζ = 1, we have P1,n,0(ς,q)=n+11qς|1[n+1]qς|ς[2](1ς)ς[n]q. {P_{1,n,0}}(\varsigma,q) = n + {11_q}\varsigma \left| {{1 \over {{{[n + 1]}_q}}} - \varsigma} \right| \le \varsigma \le {{[2](1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}. For ζ = 2, we obtain P2,n,0(ς,q)=n+22qς2|2[n+2]qς|[n+1]q[n+2]q2ς22[n+2]q[n+1]qς1[n+1]qς[2](1ς)ς[n]q. \matrix{{{P_{2,n,0}}(\varsigma,q)} \hfill & {= n + {{22}_q}{\varsigma ^2}\left| {{2 \over {{{[n + 2]}_q}}} - \varsigma} \right| \le {{{{[n + 1]}_q}{{[n + 2]}_q}} \over 2}{\varsigma ^2}{2 \over {{{[n + 2]}_q}}}} \hfill \cr {} \hfill & {\le {{[n + 1]}_q} \cdot \varsigma \cdot {1 \over {{{[n + 1]}_q}}} \le \varsigma \le {{[2](1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}.} \hfill \cr} Now, let's take γ = 1,2,⋯ is fixed, ς[[γ]q[n+γ]q,[γ+1]q[n+γ+1]q] \varsigma \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right] and ζ = 0,1,⋯, then we get an upper estimate for each Pζ,n,γ (ς,q). Under these circumstances, the proof will be separated into the following cases:

Case 1) ζγ + 1

Subcase a) From the hypothesis [γ]q[ζ]q[ζ+1]q+[γ+1]q2[n]q {[\gamma ]_q} \ge {[\zeta ]_q} - \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} which refers that [ζ]q[γ]q+[ζ+1]q+[γ+1]q2[n]q {[\zeta ]_q} \le {[\gamma ]_q} + \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} , we get Pζ,n,γ(ς;q)=pζ,n,γ(ς;q)([ζ]q[n+ζ]qς)[ζ]q[n+ζ]qς[ζ]q[n+ζ]q[γ]q[n+γ]q[γ]q+[ζ+1]q+[γ+1]q2[n]q[n+γ]q+[ζ+1]q+[γ+1]q2[n]q[γ]q[n+γ]q[n]q[ζ+1]q+[γ+1]q2[n]q([n+γ]q+[ζ+1]q+[γ+1]q2[n]q)[n+γ]q. \matrix{{{P_{\zeta,n,\gamma}}(\varsigma ;q)} \hfill & {= {p_{\zeta,n,\gamma}}(\varsigma ;q)\left({{{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \right) \le {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - \varsigma} \hfill \cr {} \hfill & {\le {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}} - {{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}} \le {{{{[\gamma ]}_q} + \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}} \over {{{[n + \gamma ]}_q} + \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}}} - {{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}}} \hfill \cr {} \hfill & {\le {{{{[n]}_q}\sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}} \over {\left({{{[n + \gamma ]}_q} + \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}}} \right){{[n + \gamma ]}_q}}}.} \hfill \cr} One can easily see that [ζ + 1]q ≤ 2[γ + 1]q, then [ζ+1]q+[γ+1]q2[n]q2[γ+1]q+[γ+1]q2[n]q \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} \le \sqrt {2{{[\gamma + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} , Pζ,n,γ(ς;q)[n]q[γ+1]q(2+[γ+1]q[n]q)([n+γ]q+[γ+1]q(2+[γ+1]q[n]q))[n+γ]q. {P_{\zeta,n,\gamma}}(\varsigma ;q) \le {{{{[n]}_q}\sqrt {{{[\gamma + 1]}_q}\left({2 + {{{{[\gamma + 1]}_q}} \over {{{[n]}_q}}}} \right)}} \over {\left({{{[n + \gamma ]}_q} + \sqrt {{{[\gamma + 1]}_q}\left({2 + {{{{[\gamma + 1]}_q}} \over {{{[n]}_q}}}} \right)}} \right){{[n + \gamma ]}_q}}}. From x[[γ]q[n+γ]q,[γ+1]q[n+γ+1]q] x \in \left[ {{{{{[\gamma ]}_q}} \over {{{[n + \gamma ]}_q}}},{{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}}} \right] , we obtain [n]q+ς.qn+γqγ1ς[n+γ]q {{{{[n]}_q} + \varsigma.{q^{n + \gamma}} - {q^\gamma}} \over {1 - \varsigma}} \le {[n + \gamma ]_q} and [γ+1]q2[γ]q2[n]qς1ς {[\gamma + 1]_q} \le 2{[\gamma ]_q} \le {{2{{[n]}_q}\varsigma} \over {1 - \varsigma}} . Because the function [n]q[z]q([n+γ]q+[z]q)[n+γ]q {{{{[n]}_q}{{[z]}_q}} \over {\left({{{[n + \gamma ]}_q} + {{[z]}_q}} \right){{[n + \gamma ]}_q}}} is decreasing according to γ and increasing according to z, we get Pζ,n,γ(x;q)2[n]q[n]qς1ς(1+[n]qς(1ς)[n]q)([n]q+ς.qn+γqγ1ς+2[n]qς1ς(1+[n]qς(1ς)[n]q))[n]q+ς.qn+γqγ1ς. {P_{\zeta,n,\gamma}}(x;q) \le {{2{{[n]}_q}\sqrt {{{{{[n]}_q}\varsigma} \over {1 - \varsigma}}\left({1 + {{{{[n]}_q}\varsigma} \over {\left({1 - \varsigma} \right){{[n]}_q}}}} \right)}} \over {\left({{{{{[n]}_q} + \varsigma.{q^{n + \gamma}} - {q^\gamma}} \over {1 - \varsigma}} + 2\sqrt {{{{{[n]}_q}\varsigma} \over {1 - \varsigma}}\left({1 + {{{{[n]}_q}\varsigma} \over {\left({1 - \varsigma} \right){{[n]}_q}}}} \right)}} \right){{{{[n]}_q} + \varsigma.{q^{n + \gamma}} - {q^\gamma}} \over {1 - \varsigma}}}}. By using simple calculation and taking n ≥ 4, we obtain Pζ,n,γ(ς;q)2[n]q(1ς)[n]qς[n1]q24(1ς)ς[n]q. {P_{\zeta,n,\gamma}}(\varsigma ;q) \le {{2{{[n]}_q}(1 - \varsigma)\sqrt {{{[n]}_q}\varsigma}} \over {[n - 1]_q^2}} \le 4{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}.

Subcase b) Let [γ]q[ζ]q[ζ+1]q+[γ+1]q2[n]q {[\gamma ]_q} \le {[\zeta ]_q} - \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} . Since the function g(ζ)=[ζ]q[ζ+1]q+[γ+1]q2[n]q g(\zeta) = {[\zeta ]_q} - \sqrt {{{[\zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} is non-decreasing according to ζ ≥ 0, it results that there exists ζ¯{1,2,} \overline \zeta \in \left\{{1,2, \cdots} \right\} , of maximum value such that [ζ¯]q[ζ¯+1]q+[γ+1]q2[n]q<[γ]q {[\overline \zeta ]_q} - \sqrt {{{[\overline \zeta + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} < {[\gamma ]_q} . Then for ζ1=ζ¯+1 {\zeta _1} = \overline \zeta + 1 we get [ζ1]q[ζ1+1]q+[γ+1]q2[n]q[γ]q {[{\zeta _1}]_q} - \sqrt {{{[{\zeta _1} + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} \ge {[\gamma ]_q} . Additionally, by choosing ζ¯ \overline \zeta means that ζ1 ≤ 2[γ + 1]q. Hence, as in the prior case we obtain Pζ¯,n,γ(ς;q)=pζ¯,n,γ(ς;q)([ζ¯+1]q[n+ζ¯+1]qς)4(1ς)ς[n]q. {P_{\overline \zeta,n,\gamma}}(\varsigma ;q) = {p_{\overline \zeta,n,\gamma}}(\varsigma ;q)\left({{{{{[\overline \zeta + 1]}_q}} \over {{{[n + \overline \zeta + 1]}_q}}} - \varsigma} \right) \le 4{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}. Since [ζ1]q>[ζ1]q[ζ1+1]q+[γ+1]q2[n]q[γ]q {[{\zeta _1}]_q} > {[{\zeta _1}]_q} - \sqrt {{{[{\zeta _1} + 1]}_q} + {{[\gamma + 1]_q^2} \over {{{[n]}_q}}}} \ge {[\gamma ]_q} , it follows [ζ1]q ≥ [γ + 1]q and Lemma 4 (i), it means that Pζ¯+1,n,γ(ς;q)Pζ¯+2,n,γ(ς;q). {P_{\overline \zeta + 1,n,\gamma}}(\varsigma ;q) \ge {P_{\overline \zeta + 2,n,\gamma}}(\varsigma ;q) \ge \cdots. Therefore, we get Pζ,n,γ(ς;q)4(1ς)ς[n]q {P_{\zeta,n,\gamma}}(\varsigma ;q) \le 4{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}} for any ζ{ζ¯+1,ζ¯+2,} \zeta \in \left\{{\overline \zeta + 1,\overline \zeta + 2, \cdots} \right\} .

Case 2) Let's suppose ζ ∈ {0,1,⋯,γ}.

Subcase a) Firstly, we suppose that [γ]q[ζ]q+[ζ]q+[γ]q2[n]q {[\gamma ]_q} \le {[\zeta ]_q} + \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} and this condition implies that [ζ]q[γ]q[ζ]q+[γ]q2[n]q {[\zeta ]_q} \ge {[\gamma ]_q} - \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} . Hence, we get Pζ,n,γ(ς;q)=pζ,n,γ(ς;q)(ς[ζ]q[n+ζ]q)[γ+1]q[n+γ+1]q[ζ]q[n+ζ]q[γ+1]q[n+γ+1]q[γ]q[ζ]q+[γ]q2[n]q[n]q+[γ]q[ζ]q+[γ]q2[n]q=[n]q([ζ]q+[γ]q2[n]q+qγ)[n+γ+1]q([n]q+[γ]q[ζ]q+[γ]q2[n]q). \matrix{{{P_{\zeta,n,\gamma}}(\varsigma ;q)} \hfill & {= {p_{\zeta,n,\gamma}}(\varsigma ;q)\left({\varsigma - {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}}} \right) \le {{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}} - {{{{[\zeta ]}_q}} \over {{{[n + \zeta ]}_q}}}} \hfill \cr {} \hfill & {\le {{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}} - {{{{[\gamma ]}_q} - \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}} \over {{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}}}} \hfill \cr {} \hfill & {= {{{{[n]}_q}\left({\sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} + {q^\gamma}} \right)} \over {{{[n + \gamma + 1]}_q}\left({{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}} \right)}}.} \hfill \cr} By taking ζγ, we get Pζ,n,γ(ς;q)=[n]q([γ]q+[γ]q2[n]q+qγ)[n+γ+1]q([n]q+[γ]q[γ]q+[γ]q2[n]q)[n]q([n]qς1ς11ς+qγ)[n+γ+1]q([n]q+[γ]q[n]qς1ς11ς). \matrix{{{P_{\zeta,n,\gamma}}(\varsigma ;q)} \hfill & {= {{{{[n]}_q}\left({\sqrt {{{[\gamma ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} + {q^\gamma}} \right)} \over {{{[n + \gamma + 1]}_q}\left({{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{[\gamma ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}}} \right)}}} \hfill \cr {} \hfill & {\le {{{{[n]}_q}\left({\sqrt {{{{{[n]}_q}\varsigma} \over {1 - \varsigma}}{1 \over {1 - \varsigma}}} + {q^\gamma}} \right)} \over {{{[n + \gamma + 1]}_q}\left({{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{{{[n]}_q}\varsigma} \over {1 - \varsigma}}{1 \over {1 - \varsigma}}}} \right)}}.} \hfill \cr} From [n]q+ς.qn+γqγ1ς[n+γ]q {{{{[n]}_q} + \varsigma.{q^{n + \gamma}} - {q^\gamma}} \over {1 - \varsigma}} \le {[n + \gamma ]_q} , Pζ,n,γ(ς;q)(1ς)[n]q([n]qς+qγ(1ς))([n]q+(qn1)qγ)([n]q+ςqn+γqγ[n]qς)(1ς)([n]qς+qγ(1ς))[n]q+ςqn+γqγ[n]qς. \matrix{{{P_{\zeta,n,\gamma}}(\varsigma ;q)} \hfill & {\le {{(1 - \varsigma){{[n]}_q}\left({\sqrt {{{[n]}_q}\varsigma} + {q^\gamma}(1 - \varsigma)} \right)} \over {\left({{{[n]}_q} + ({q^n} - 1){q^\gamma}} \right)\left({{{[n]}_q} + \varsigma {q^{n + \gamma}} - {q^\gamma} - \sqrt {{{[n]}_q}\varsigma}} \right)}}} \hfill \cr {} \hfill & {\le {{(1 - \varsigma)\left({\sqrt {{{[n]}_q}\varsigma} + {q^\gamma}(1 - \varsigma)} \right)} \over {{{[n]}_q} + \varsigma {q^{n + \gamma}} - {q^\gamma} - \sqrt {{{[n]}_q}\varsigma}}}.} \hfill \cr} Besides, from γ1n+1 \gamma \ge {1 \over {n + 1}} and n ≥ 4 we get 1ς+[n]qς[n]q 1 - \varsigma + \sqrt {{{[n]}_q}\varsigma} \le \sqrt {{{[n]}_q}} and [n]qς+152[n]qς \sqrt {{{[n]}_q}\varsigma} + 1 \le {5 \over 2}\sqrt {{{[n]}_q}\varsigma} . Therefore, Pζ,n,γ(ς;q)(1ς)([n]qς+qγ)[n]q[n]q52(1ς)[n]qς[n]q[n]q5(1ς)ς[n]q. \matrix{{{P_{\zeta,n,\gamma}}(\varsigma ;q)} \hfill & {\le {{(1 - \varsigma)\left({\sqrt {{{[n]}_q}\varsigma} + {q^\gamma}} \right)} \over {{{[n]}_q} - \sqrt {{{[n]}_q}}}} \le {5 \over 2}{{(1 - \varsigma)\sqrt {{{[n]}_q}} \sqrt \varsigma} \over {{{[n]}_q} - \sqrt {{{[n]}_q}}}}} \hfill \cr {} \hfill & {\le {{5(1 - \varsigma)\sqrt \varsigma} \over {\sqrt {{{[n]}_q}}}}.} \hfill \cr}

Subcase b) Let [γ]q[ζ]q+[ζ]q+[γ]q2[n]q {[\gamma ]_q} \ge {[\zeta ]_q} + \sqrt {{{[\zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} and ζ˜{1,2,,γ} \widetilde \zeta \in \left\{{1,2, \cdots,\gamma} \right\} be the minimum value such that [ζ˜]q+[ζ˜]q+[γ]q2[n]q>[γ]q {[\widetilde \zeta ]_q} + \sqrt {{{[\widetilde \zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} > {[\gamma ]_q} . So, ζ2=ζ˜1 {\zeta _2} = \widetilde \zeta - 1 verifies [ζ2]q+[ζ2]q+[γ]q2[n]q[γ]q {[{\zeta _2}]_q} + \sqrt {{{[{\zeta _2}]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} \le {[\gamma ]_q} and similar to sub case (a), we get Pζ˜1,n,γ(ς;q)=pζ˜1,n,γ(ς;q)(ς[ζ˜1]q[n+ζ˜1]q)[γ+1]q[n+γ+1]q[ζ˜1]q[n+ζ˜1]q[γ+1]q[n+γ+1]q[γ]q[ζ˜]q+[γ]q2[n]q1[n]q+[γ]q[ζ˜]q+[γ]q2[n]q1[n]q([ζ˜]q+[γ]q2[n]q+1+qγ)[n+γ+1]q([n]q+[γ]q[ζ˜]q+[γ]q2[n]q1)[n]q([γ]q+[γ]q2[n]q+1+qγ)[n+γ+1]q([n]q+[γ]q[γ]q+[γ]q2[n]q1)[n]q([n]qς1ς11ς+[γ]q2[n]q+1+qγ)[n+γ+1]q([n]q+[γ]q[n]qς1ς11ς+[γ]q2[n]q1)(1ς)([n]qς+1+qγ)[n]q1qn+γ+(1+qn+γ)ς[n]qx. \matrix{{{P_{\widetilde \zeta - 1,n,\gamma}}(\varsigma ;q)} \hfill & {= {p_{\widetilde \zeta - 1,n,\gamma}}(\varsigma ;q)\left({\varsigma - {{{{[\widetilde \zeta - 1]}_q}} \over {{{[n + \widetilde \zeta - 1]}_q}}}} \right) \le {{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}} - {{{{[\widetilde \zeta - 1]}_q}} \over {{{[n + \widetilde \zeta - 1]}_q}}}} \hfill \cr {} \hfill & {\le {{{{[\gamma + 1]}_q}} \over {{{[n + \gamma + 1]}_q}}} - {{{{[\gamma ]}_q} - \sqrt {{{[\widetilde \zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} - 1} \over {{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{[\widetilde \zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} - 1}}} \hfill \cr {} \hfill & {\le {{{{[n]}_q}\left({\sqrt {{{[\widetilde \zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} + 1 + {q^\gamma}} \right)} \over {{{[n + \gamma + 1]}_q}\left({{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{[\widetilde \zeta ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} - 1} \right)}}} \hfill \cr {} \hfill & {\le {{{{[n]}_q}\left({\sqrt {{{[\gamma ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} + 1 + {q^\gamma}} \right)} \over {{{[n + \gamma + 1]}_q}\left({{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{[\gamma ]}_q} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} - 1} \right)}}} \hfill \cr {} \hfill & {\le {{{{[n]}_q}\left({\sqrt {{{{{[n]}_q}\varsigma} \over {1 - \varsigma}}{1 \over {1 - \varsigma}} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} + 1 + {q^\gamma}} \right)} \over {{{[n + \gamma + 1]}_q}\left({{{[n]}_q} + {{[\gamma ]}_q} - \sqrt {{{{{[n]}_q}\varsigma} \over {1 - \varsigma}}{1 \over {1 - \varsigma}} + {{[\gamma ]_q^2} \over {{{[n]}_q}}}} - 1} \right)}}} \hfill \cr {} \hfill & {\le {{(1 - \varsigma)(\sqrt {{{[n]}_q}\varsigma} + 1 + {q^\gamma})} \over {{{[n]}_q} - 1 - {q^{n + \gamma}} + (1 + {q^{n + \gamma}})\varsigma - \sqrt {{{[n]}_q}x}}}.} \hfill \cr}

From γ1n+1 \gamma \ge {1 \over {n + 1}} and n ≥ 4, we immediately get [n]qx+1+qγ(1+5)[n]qς \sqrt {{{[n]}_q}x} + 1 + {q^\gamma} \le (1 + \sqrt 5)\sqrt {{{[n]}_q}\varsigma} and it follows that Pζ˜1,n,γ(ς;q)(1+5)[n]qς(1ς)[n]q1qn+γ+(1+qn+γ)ς[n]qς. {P_{\widetilde \zeta - 1,n,\gamma}}(\varsigma ;q) \le {{(1 + \sqrt 5)\sqrt {{{[n]}_q}\varsigma} (1 - \varsigma)} \over {{{[n]}_q} - 1 - {q^{n + \gamma}} + (1 + {q^{n + \gamma}})\varsigma - \sqrt {{{[n]}_q}\varsigma}}}. Let h(ς)=[n]q1qn+γ+(1+qn+γ)ς[n]qς h(\varsigma) = {[n]_q} - 1 - {q^{n + \gamma}} + (1 + {q^{n + \gamma}})\varsigma - \sqrt {{{[n]}_q}\varsigma} , ς ≥ 0. It is easy to show that h has a global minimum in ς0=n4(1+qn+γ)2 {\varsigma _0} = {n \over {4{{(1 + {q^{n + \gamma}})}^2}}} . It means that h(ς)h(n4(1+qn+γ)2)=(3+4qn+γ)[n]q4(1+qn+γ)24(1+qn+γ)2 h(\varsigma) \ge h({n \over {4{{(1 + {q^{n + \gamma}})}^2}}}) = {{(3 + 4{q^{n + \gamma}}){{[n]}_q} - 4{{(1 + {q^{n + \gamma}})}^2}} \over {4{{(1 + {q^{n + \gamma}})}^2}}} . Therefore, we obtain Pζ˜1,n,γ(ς;q)4(1+qn+γ)(1+5)3(1ς)ςn. {P_{\widetilde \zeta - 1,n,\gamma}}(\varsigma ;q) \le {{4(1 + {q^{n + \gamma}})(1 + \sqrt 5)} \over 3}{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt n}}. Lemma 4 (ii) gives us to Pζ˜1,n,γ(ς;q)Pζ˜2,n,γ(ς;q)P0,n,γ(ς;q) {P_{\widetilde \zeta - 1,n,\gamma}}(\varsigma ;q) \ge {P_{\widetilde \zeta - 2,n,\gamma}}(\varsigma ;q) \ge \cdots \ge {P_{0,n,\gamma}}(\varsigma ;q) . Hence, we have Pζ,n,γ(x;q)4(1+qn+γ)(1+5)3(1ς)ςn, {P_{\zeta,n,\gamma}}(x;q) \le {{4(1 + {q^{n + \gamma}})(1 + \sqrt 5)} \over 3}{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt n}}, for any ζγ. Collecting all the estimates obtained above, we have Zn(M)(ης,ς;q)4(1+qn+γ)(1+5)3(1ς)ςn Z_n^{(M)}\left({{\eta _\varsigma},\varsigma ;q} \right) \le {{4(1 + {q^{n + \gamma}})(1 + \sqrt 5)} \over 3}{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt n}} for all ς ∈ [0,1] and choosing δn=4(1+qn+γ)(1+5)3(1ς)ςn {\delta _n} = {{4(1 + {q^{n + \gamma}})(1 + \sqrt 5)} \over 3}{{(1 - \varsigma)\sqrt \varsigma} \over {\sqrt n}} in the inequality given in (6), we get the proof of the theorem.

Conclusion

In this paper, nonlinear max-product type q-Meyer-König and Zeller operators have been introduced. Additionally, the modulus of continuity has been used to investigate the degree of approximation and the rate of convergence of the operators. As a result, the max-product type q-Meyer-König and Zeller operators approximated better than the classical linear q-Meyer-König and Zeller operators. In future studies, the shape preservation properties of these operators may be studied, and comparable research may be incorporated into more practical operator frameworks.

Declarations
Competing interests 

The authors declare that there is no conflict of interest regarding the publication of this paper.

Author's contributions

E.A.-Conceptualization, Methodology, Formal Analysis, Writing-Review and Editing. Ö.Ö.G.-Formal Analysis, Validation, Writing-Original Draft. S.K.S.-Formal Analysis, Validation, Resources. All authors read and approved the final submitted version of this manuscript.

Funding

No funding was received to assist with the preparation of this manuscript.

Acknowledgement

Thank you so much to Editor-in-Chief Prof. Dr. Haci Mehmet Baskonus for his guidelines and opinions throughout this process.

Data availability statement

All data that support the findings of this study are included within the article.

Using of AI tools

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

eISSN:
2956-7068
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Computer Sciences, other, Engineering, Introductions and Overviews, Mathematics, General Mathematics, Physics