Zacytuj

Introduction

Fractional calculus (FC) refers to the study of differential and integral operators of either real or complex order. Due to a variety of applications across several scientific disciplines and technology, FC has grown in significance as well as usage over the past four decades. Fractional operators were conceived and mathematically formalized only in recent years. The numerous properties of fractional operators have generated a great deal of interest in fractional calculus in recent years, as well as a wide range of applications, with a focus on the simulation of physical issues. Areas that have seen the largest number of applications include the formulation of constitutive equations for viscoelastic materials [1], transport processes in complex media [2], mechanics [3], non-local elasticity, plasticity [4], model-order reduction of lumped parameter systems and biomedical engineering [5, 6].

Numerous subfields of computational mathematics have found major significance in the fractional integral operator (FIO) [7], which involves a variety of special functions. Over the last five decades, several scientists like Saxena and Srivastava [8], Bhatta and Debnath [9], Saigo [10], Marichev and Kilbas [11], Ross and Miller [12], Purohit and Jangid [13], Love [14] and Ram and Kumar [15] have thoroughly investigated the characteristics, uses, and numerous extensions of several hypergeometric operators of fractional integration. Engineers, physicists, biologists and financial analysts are only some of the communities that may find several points of interest and material for further considerations in this work.

A significant number of new and recognised outcomes including Saigo FC operators and many special functions, particularly the incomplete H-function and incomplete I-function, follow as special instances of the primary discoveries. This is due to the broad scope of the Merichev-Saigo-Maeda (MSM) operators, incomplete ℵ-function, and a broad category of polynomials.

The rest of this paper is organized as follows. In section 2, the preliminaries are presented. In section 3, incomplete ℵ-functions and the Srivastava polynomial are combined, and MSM fractional order integrals of the left- and right-hand types are created. In section 4, incomplete ℵ-functions and the Srivastava polynomial are combined, and MSM fractional order derivative of the left- and right-hand types are created. In section 5, we develop the particular instances for the incomplete ℵ-functions. In section 6, the paper is completed by presenting the main contribution of the paper.

Preliminaries

The well-known lower and upper gamma functions of incomplete type [16] γ (𝔳,𝔜) and Γ (𝔳,𝔜) respectively, are presented as: γ(v,Y)=0Yuv1eudu,((v)>0;Y0), \gamma (\mathfrak{v},\mathfrak{Y}) = \int_0^\mathfrak{Y} {\mathfrak{u}^{\mathfrak{v} - 1}}\;{e^{ - \mathfrak{u}}}\;d\mathfrak{u},\quad \quad (\Re (\mathfrak{v}) > 0;{\kern 1pt} {\kern 1pt} \mathfrak{Y} \mathbin{\lower.3ex\hbox{$\buildrel>\over{\smash{\scriptstyle=}\vphantom{_x}}$}} 0), and Γ(v,Y)=Yuv1eudu,(Y0;(v)>0whenY=0). \Gamma (\mathfrak{v},\mathfrak{Y}) = \int_\mathfrak{Y}^\infty {\mathfrak{u}^{\mathfrak{v} - 1}}\;{e^{ - \mathfrak{u}}}\;d\mathfrak{u},\quad \quad (\mathfrak{Y} \mathbin{\lower.3ex\hbox{$\buildrel>\over{\smash{\scriptstyle=}\vphantom{_x}}$}} 0;{\kern 1pt} {\kern 1pt} \Re (\mathfrak{v}) > 0\quad when\quad \mathfrak{Y} = 0). The following connection (sometimes referred to as the decomposition formula) is satisfied by these incomplete gamma functions. γ(v,Y)+Γ(v,Y)=Γ(v),((v)>0). \gamma (\mathfrak{v},\mathfrak{Y}) + \Gamma (\mathfrak{v},\mathfrak{Y}) = \Gamma (\mathfrak{v}),\quad \quad (\Re (\mathfrak{v}) > 0).

The Srivastava investigated a broad category of polynomials [17], which is described as follows (see [18] also): SQP[t]=O=0[QP](Q)POO!AQ,OtO, S_\mathfrak{Q}^\mathfrak{P}[t] = \sum\limits_{\mathfrak{O} = 0}^{[\mathfrak{Q}\mathfrak{P}]} \frac{{{{( - \mathfrak{Q})}_{\mathfrak{P}\mathfrak{O}}}}}{{\mathfrak{O}!}}{A_{\mathfrak{Q},\mathfrak{O}}}{\kern 1pt} {t^\mathfrak{O}}{\kern 1pt} , where 𝔓 ∈ ℤ+ and A𝔔,𝔒 are real or complex numbers arbitrary constants.

The notations [k] indicates the floor function and (κ)μ denote the Pochhammer symbol described by: (κ)0=1and(κ)μ=Γ(κ+μ)Γ(κ),(μ), {(\kappa )_0} = 1\quad and\quad {(\kappa )_\mu } = \frac{{\Gamma (\kappa + \mu )}}{{\Gamma (\kappa )}},\quad (\mu \in \mathbb{C}), in the form of the Gamma function. Numerous FC results relating to the incomplete ℵ-functions are presented in this paper. For ϛ, ϛ', ϰ, ϰ', ϖ ∈ ℂ and x > 0 with ℜ (ϖ) > 0, the MSM FIO [19] with the left-and right-hand sides are explained as: (0+ς,ς',ϰ,ϰ',ϖf)(x)=xςΓ(ϖ)0x(xy)ϖ1yς'×F3(ς,ς',ϰ,ϰ';ϖ;1yx,1xy)f(y)dy, \left( {\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },\varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }f} \right)(x) = \frac{{{x^{ - \varsigma }}}}{{\Gamma (\varpi )}}\int_0^x {(x - y)^{\varpi - 1}}{y^{ - {\varsigma ^\prime }}} \times {F_3}\left( {\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime };{\kern 1pt} \varpi ;{\kern 1pt} 1 - \frac{y}{x},{\kern 1pt} 1 - \frac{x}{y}} \right)f(y)dy, and (ς,ς',ϰ,ϰ',ϖf)(x)=xς'Γ(ϖ)x(yx)ϖ1yς×F3(ς,ς',ϰ,ϰ';ϖ;1xy,1yx)f(y)dy, \left( {\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },{\kern 1pt} \varpi }f} \right)(x) = \frac{{{x^{ - {\varsigma ^\prime }}}}}{{\Gamma (\varpi )}}\int_x^\infty {(y - x)^{\varpi - 1}}{y^{ - \varsigma }} \times {F_3}\left( {\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime };{\kern 1pt} \varpi ;{\kern 1pt} 1 - \frac{x}{y},{\kern 1pt} 1 - \frac{y}{x}} \right)f(y)dy, respectively.

According to a description, the left-and right-hand handed MSM fractional differential operators are (see [20]): (D0+ς,ς',ϰ,ϰ',ϖf)(x)=(ddx)α(0+ς',ς,ϰ'+α,ϰ,ϖ+αf)(x), \left( {\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },{\kern 1pt} \varpi }f} \right)(x) = {\left( {\frac{d}{{dx}}} \right)^\alpha }\left( {\mathcal{I}_{0 + }^{ - {\varsigma ^\prime },{\kern 1pt} - \varsigma ,{\kern 1pt} - {\varkappa ^\prime } + \alpha ,{\kern 1pt} - \varkappa ,{\kern 1pt} - \varpi + \alpha }f} \right)(x), and (Dς,ς',ϰ,ϰ',ϖf)(x)=(ddx)[α](ς',ς,ϰ',ϰ+α,ϖ+αf)(x), \left( {\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },{\kern 1pt} \varpi }f} \right)(x) = {\left( { - \frac{d}{{dx}}} \right)^{[\alpha ]}}\left( {\mathcal{I}_ - ^{ - {\varsigma ^\prime },{\kern 1pt} - \varsigma ,{\kern 1pt} - {\varkappa ^\prime },{\kern 1pt} - \varkappa + \alpha ,{\kern 1pt} - \varpi + \alpha }f} \right)(x), where, α = [ℜ (ϖ)] + 1 and [[ℜ(ϖ)] represent the integer component in [ℜ(ϖ). For max {|x|, |y|} < 1, the third Appell function F3 has the following definition: F3(ς,ς',ϰ,ϰ';ϖ;x;y)=i,j=0(ς)i(ς')j(ϰ)i(ϰ')j(ϖ)i+jxiyji!j!, {F_3}(\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime };{\kern 1pt} \varpi ;{\kern 1pt} x;{\kern 1pt} y) = \sum\limits_{i,{\kern 1pt} j = 0}^\infty \frac{{{{(\varsigma )}_i}{{({\varsigma ^\prime })}_j}{{(\varkappa )}_i}{{({\varkappa ^\prime })}_j}}}{{{{(\varpi )}_{i + j}}}}\frac{{{x^i}{\kern 1pt} {y^j}}}{{i!{\kern 1pt} j!}}, here, (ϛ)n is the Pochhammer symbol. Current articles [21, 22] include a comprehensive demonstration associated with the MSM operators along with the uses and characteristics. Saigo [10] instigate the fractional operators related with the Gauss hypergeometric function 2F1( ). The left-and right-handed Saigo FIO are given the following descriptions for ϛ, ϰ, ϖ ∈ ℂ, x > 0 and ℜ(ϛ) > 0. (0+ς,ϰ,ϖf)(x)=xςϰΓ(ς)0x(xy)ς12F1(ς+ϰ,ϖ;ς;1yx)f(y)dy, \left( {\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }f} \right)(x) = \frac{{{x^{ - \varsigma - \varkappa }}}}{{\Gamma (\varsigma )}}\int_0^x {(x - y)^{\varsigma - 1}}{{\kern 1pt} _2}{F_1}\left( {\varsigma + \varkappa ,{\kern 1pt} - \varpi ;{\kern 1pt} \varsigma ;{\kern 1pt} 1 - \frac{y}{x}} \right)f(y)dy, and (ς,ϰ,ϖf)(x)=1Γ(ς)x(yx)ς1yςϰ2F1(ς+ϰ,ϖ;ς;1xy)f(y)dy, \left( {\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }f} \right)(x) = \frac{1}{{\Gamma (\varsigma )}}\int_x^\infty {(y - x)^{\varsigma - 1}}{y^{ - \varsigma - \varkappa }}{{\kern 1pt} _2}{F_1}\left( {\varsigma + \varkappa ,{\kern 1pt} - \varpi ;{\kern 1pt} \varsigma ;{\kern 1pt} 1 - \frac{x}{y}} \right)f(y)dy, respectively.

The following definitions are given for the left-and right-sided Saigo differential operators: (D0+ς,ϰ,ϖf)(x)=(ddx)[(ς)]+1(0+ς+[(ς)]+1,ϰ[(ς)]1,ς+ϖ[(ς)]1f)(x), \left( {\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }f} \right)(x) = {\left( {\frac{d}{{dx}}} \right)^{[\Re (\varsigma )] + 1}}\left( {\mathcal{I}_{0 + }^{ - \varsigma + [\Re (\varsigma )] + 1,{\kern 1pt} - \varkappa - [\Re (\varsigma )] - 1,{\kern 1pt} \varsigma + \varpi - [\Re (\varsigma )] - 1}f} \right)(x), and (Dς,ϰ,ϖf)(x)=(ddx)[(ς)]+1(ς+[(ς)]+1,ϰ[(ς)]1,ς+ϖf)(x). \left( {\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }f} \right)(x) = {\left( { - \frac{d}{{dx}}} \right)^{[\Re (\varsigma )] + 1}}\left( {\mathcal{I}_ - ^{ - \varsigma + [\Re (\varsigma )] + 1,{\kern 1pt} - \varkappa - [\Re (\varsigma )] - 1,{\kern 1pt} \varsigma + \varpi }f} \right)(x).

For ϰ = −ϛand ϰ = 0 in (10)–(13), the Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional operators are attained respectively (for further explanation see [23]). 2F1 is associated with F3 as F3(ς,γς,ϰ,γϰ;γ;x;y)=2F1(ς,ϰ;γ;x+yxy). {F_3}(\varsigma ,{\kern 1pt} \gamma - \varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \gamma - \varkappa ;{\kern 1pt} \gamma ;{\kern 1pt} x;{\kern 1pt} y) = {{\kern 1pt} _2}{F_1}(\varsigma ,{\kern 1pt} \varkappa ;{\kern 1pt} \gamma ;{\kern 1pt} x + y - xy).

The MSM fractional operators (5)–(8) are associated to Saigo operators (10)–(13) by (0+ς,0,ϰ,ϰ',ϖf)(x)=(0+ϖ,ςϖ,ϰf)(x), \left( {\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} 0,{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }f} \right)(x) = \left( {\mathcal{I}_{0 + }^{\varpi ,{\kern 1pt} \varsigma - \varpi ,{\kern 1pt} - \varkappa }f} \right)(x), (ς,0,ϰ,ϰ',ϖf)(x)=(ϖ,ςϖ,ϰf)(x), \left( {\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} 0,{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }f} \right)(x) = \left( {\mathcal{I}_ - ^{\varpi ,{\kern 1pt} \varsigma - \varpi ,{\kern 1pt} - \varkappa }f} \right)(x), and (D0+0,ς',ϰ,ϰ',ϖf)(x)=(D0+ϖ,ς'ϖ,ϰ'ϖf)(x), \left( {\mathcal{D}_{0 + }^{0,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },{\kern 1pt} \varpi }f} \right)(x) = \left( {\mathcal{D}_{0 + }^{\varpi ,{\kern 1pt} {\varsigma ^\prime } - \varpi ,{\kern 1pt} {\varkappa ^\prime } - \varpi }f} \right)(x), (D0,ς',ϰ,ϰ',ϖf)(x)=(Dϖ,ς'ϖ,ϰ'ϖf)(x). \left( {\mathcal{D}_ - ^{0,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },{\kern 1pt} \varpi }f} \right)(x) = \left( {\mathcal{D}_ - ^{\varpi ,{\kern 1pt} {\varsigma ^\prime } - \varpi ,{\kern 1pt} {\varkappa ^\prime } - \varpi }f} \right)(x).

Lemma 1

Let ϛ, ϛ', ϰ, ϰ', ϖ ,λ ∈ ℂ and ℜ(ϖ) > 0.

(a) If ℜ(λ) > max {0, ℜ(ϛ' − ϰ'), ℜ(ϛ+ϛ' + ϰϖ)}, then (0+ς,ς',ϰ,ϰ',ϖtλ1)(x)=xςς'+ϖ+λ1Γ(λ)Γ(ς'+ϰ'+λ)Γ(ςς'ϰ+ϖ+λ)Γ(ϰ'+λ)Γ(ςς'+ϖ+λ)Γ(ς'ϰ+ϖ+λ). \left( {\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{\lambda - 1}}} \right)(x) = {x^{ - \varsigma - {\varsigma ^\prime } + \varpi + \lambda - 1}}\frac{{\Gamma (\lambda )\Gamma ( - {\varsigma ^\prime } + {\varkappa ^\prime } + \lambda )\Gamma ( - \varsigma - {\varsigma ^\prime } - \varkappa + \varpi + \lambda )}}{{\Gamma ({\varkappa ^\prime } + \lambda )\Gamma ( - \varsigma - {\varsigma ^\prime } + \varpi + \lambda )\Gamma ( - {\varsigma ^\prime } - \varkappa + \varpi + \lambda )}}.

(b) If ℜ(λ) > max {ℜ(ϰ), ℜ(−ϛϛ' +ϖ), ℜ(−ϛϰ' +ϖ)}, then (ς,ς',ϰ,ϰ',ϖtλ)(x)=xςς'+ϖλΓ(ϰ+λ)Γ(ς+ς'ϖ+λ)Γ(ς+ϰ'ϖ+λ)Γ(λ)Γ(ςϰ+λ)Γ(ς+ς'+ϰ'ϖ+λ). \left( {\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{ - \lambda }}} \right)(x) = {x^{ - \varsigma - {\varsigma ^\prime } + \varpi - \lambda }}{\kern 1pt} \frac{{\Gamma ( - \varkappa + \lambda )\Gamma (\varsigma + {\varsigma ^\prime } - \varpi + \lambda )\Gamma (\varsigma + {\varkappa ^\prime } - \varpi + \lambda )}}{{\Gamma (\lambda )\Gamma (\varsigma - \varkappa + \lambda )\Gamma (\varsigma + {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi + \lambda )}}.

Lemma 2

Let ϛ, ϛ', ϰ, ϰ', ϖ , λ ∈ ℂ.

(a) If ℜ(λ) > max {0, ℜ(−ϛ+ ϰ), ℜ(−ϛϛ' − ϰ' +ϖ)}, then (D0+ς,ς',ϰ,ϰ',ϖtλ1)(x)=xς+ς'ϖ+λ1Γ(λ)Γ(ςϰ+λ)Γ(ς+ς'+ϰ'ϖ+λ)Γ(ϰ+λ)Γ(ς+ς'ϖ+λ)Γ(ς+ϰ'ϖ+λ). \left( {\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{\lambda - 1}}} \right)(x) = {x^{\varsigma + {\varsigma ^\prime } - \varpi + \lambda - 1}}\frac{{\Gamma (\lambda )\Gamma (\varsigma - \varkappa + \lambda )\Gamma (\varsigma + {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi + \lambda )}}{{\Gamma ( - \varkappa + \lambda )\Gamma (\varsigma + {\varsigma ^\prime } - \varpi + \lambda )\Gamma (\varsigma + {\varkappa ^\prime } - \varpi + \lambda )}}.

(b) If ℜ(λ) > max {ℜ(−ϰ'), ℜ(ϛ' + ϰϖ), ℜ(ϛ+ϛ' −ϖ ) + [ℜ(ϖ)] + 1}, then (Dς,ς',ϰ,ϰ',ϖtλ)(x)=xς+ς'ϖλΓ(ϰ'+λ)Γ(ςς'+ϖ+λ)Γ(ς'ϰ+ϖ+λ)Γ(λ)Γ(ς'+ϰ'+λ)Γ(ςς'ϰ+ϖ+λ). \left( {\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{ - \lambda }}} \right)(x) = {x^{\varsigma + {\varsigma ^\prime } - \varpi - \lambda }}\frac{{\Gamma ({\varkappa ^\prime } + \lambda )\Gamma ( - \varsigma - {\varsigma ^\prime } + \varpi + \lambda )\Gamma ( - {\varsigma ^\prime } - \varkappa + \varpi + \lambda )}}{{\Gamma (\lambda )\Gamma ( - {\varsigma ^\prime } + {\varkappa ^\prime } + \lambda )\Gamma ( - \varsigma - {\varsigma ^\prime } - \varkappa + \varpi + \lambda )}}.

Incomplete ℵ-function

In this paper, we introduced the incomplete ℵ-function Γrj,sj,ρj;mU,V(Z) ^\Gamma \aleph _{{r_j},{s_j},{\rho _j};m}^{U,V}(\mathcal{Z}) and γrj,sj,ρj;mU,V(Z) ^\gamma \aleph _{{r_j},{s_j},{\rho _j};m}^{U,V}(\mathcal{Z}) [24, 25] as follows: γrj,sj,ρj;mU,V(Z)=γrj,sj,ρj;mU,V[Z|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj]=12πι$Φ(q,Y)Zqdq, \begin{array}{*{20}{l}}{{{\kern 1pt} ^\gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} (\mathcal{Z}){ = ^\gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right]}\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\kern 1pt} = \frac{1}{{2\pi \iota }}\int_\$ \;\Phi (q,\mathcal{Y})\;{\mathcal{Z}^{ - q}}\;dq,}\end{array} where Φ(q,Y)=γ(1Λ1D1q;Y)n=1UΓ(εn+Enq)n=2VΓ(1ΛnDnq)j=1mρj[n=U+1sjΓ(1εnjEnjq)n=V+1rjΓ(Λnj+Dnj)], \Phi (q,\mathcal{Y}) = \frac{{\gamma (1 - {\Lambda _1} - {\mathfrak{D}_1}q;\mathcal{Y}){\kern 1pt} \prod\limits_{n = 1}^U \Gamma ({\varepsilon _n} + {\mathfrak{E}_n}q){\kern 1pt} \prod\limits_{n = 2}^V \Gamma (1 - {\Lambda _n} - {\mathfrak{D}_n}q)}}{{\sum\limits_{j = 1}^m {\rho _j}{\kern 1pt} [\prod\limits_{n = U + 1}^{{s_j}} \Gamma (1 - {\varepsilon _{nj}} - {\mathfrak{E}_{nj}}q){\kern 1pt} \prod\limits_{n = V + 1}^{{r_j}} \Gamma ({\Lambda _{nj}} + {\mathfrak{D}_{nj}})]}}, and Γrj,sj,ρj;mU,V(Z)=Γrj,sj,ρj;mU,V[Z|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj]=12πι$Ψ(q,Y)Zqdq, \begin{array}{*{20}{l}}{{{\kern 1pt} ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} (\mathcal{Z}){ = ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right]}\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\kern 1pt} = \frac{1}{{2\pi \iota }}\int_\$ \;\Psi (q,\mathcal{Y})\;{\mathcal{Z}^{ - q}}\;dq,}\end{array} where Ψ(q,Y)=Γ(1Λ1D1q;Y)n=1UΓ(εn+Enq)n=2VΓ(1ΛnDnq)j=1mρj[n=U+1sjΓ(1εnjEnjq)n=V+1rjΓ(Λnj+Dnj)], \Psi (q,\mathcal{Y}) = \frac{{\Gamma (1 - {\Lambda _1} - {\mathfrak{D}_1}q;\mathcal{Y}){\kern 1pt} \prod\limits_{n = 1}^U \Gamma ({\varepsilon _n} + {\mathfrak{E}_n}q){\kern 1pt} \prod\limits_{n = 2}^V \Gamma (1 - {\Lambda _n} - {\mathfrak{D}_n}q)}}{{\sum\limits_{j = 1}^m {\rho _j}{\kern 1pt} [\prod\limits_{n = U + 1}^{{s_j}} \Gamma (1 - {\varepsilon _{nj}} - {\mathfrak{E}_{nj}}q){\kern 1pt} \prod\limits_{n = V + 1}^{{r_j}} \Gamma ({\Lambda _{nj}} + {\mathfrak{D}_{nj}})]}}, for 𝒵 ≠ 0,𝒴 ≧ 0, the incomplete ℵ-functions γrj,sj,ρj;mU,V(Z) ^\gamma \aleph _{{r_j},{s_j},{\rho _j};m}^{U,V}(\mathcal{Z}) and Γrj,sj,ρj;mU,V(Z) ^\Gamma \aleph _{{r_j},{s_j},{\rho _j};m}^{U,V}(\mathcal{Z}) in (22) and (24) exist in the circumstances listed as follows:

The complex- plane contour $ extended from γi∞ to γ + i∞, γ ∈ ℝ, and the poles of the gamma functions Γ (1 − Λn − 𝔇nq) for n = 1, 2, ...,V are not perfectly matched with the gamma function poles Γ (ϵn + 𝔈nq) for n = 1,2,..,U. The parameters rj and sj ℤ+ satisfying 0 ≤ Vrj,0 ≤ Usj for 1 ≤ jm. The parameters 𝔇n, 𝔈n, 𝔈nj, 𝔇nj are positive numbers, and Λn, εn, Λnj, εnj are complex. The void product is considered to represent unity and all of the poles Φ (q,𝒴) and Ψ (q,𝒴) should be simple.

A number of unique remarks are made about incomplete ℵ-functions and are as follows:

Remark 1

When 𝒴 = 0, Equation (24) changes to the suggested ℵ-function of Sudland [26, 27]: Γrj,sj,ρj;mU,V[Z|(Λ1,D1:0),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj]=rj,sj,ρj;mU,V[Z|(Λn,Dn)1,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj]. \begin{array}{*{20}{l}}{{{\kern 1pt} ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:0),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right]}\\{\;\;\;\;\;\;\;\;\;\;\;\; = \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{{{({\Lambda _n},{\mathfrak{D}_n})}_{1,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].}\end{array}

Remark 2

Again, when ρj = 1 in (22) and (24), then it changes to the incomplete I-function of Bansal and Kumar [28]: γrj,sj,ρj;mU,V[Z|(Λ1,D1:Y),(Λn,Dn)2,V,[1(Λnj,Dnj)]V+1,rj(εn,En)1,U,[1(εnj,Enj)]U+1,sj]=γIrj,sj;mU,V[Z|(Λ1,D1:Y),(Λn,Dn)2,V,(Λnj,Dnj)V+1,rj(εn,En)1,U,(εnj,Enj)U+1,sj], \begin{array}{l}{{\kern 1pt} ^\gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[1({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[1({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\\end{array}} \right]\\\;\;\;\;\;\;\;\;\;\;\;\; = {{\kern 1pt} ^\gamma }I_{{r_j},{\kern 1pt} {s_j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{({\Lambda _{nj}},{\mathfrak{D}_{nj}})}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{({\varepsilon _{nj}},{\mathfrak{E}_{nj}})}_{U + 1,{s_j}}}}\\\end{array}} \right],\end{array} and Γrj,sj,ρj;mU,V[Z|(Λ1,D1:Y),(Λn,Dn)2,V,[1(Λnj,Dnj)]V+1,rj(εn,En)1,U,[1(εnj,Enj)]U+1,sj]=ΓIrj,sj;mU,V[Z|(Λ1,D1:Y),(Λn,Dn)2,V,(Λnj,Dnj)V+1,rj(εn,En)1,U,(εnj,Enj)U+1,sj ] . \begin{array}{l}{{\kern 1pt} ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[1({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[1({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]\\\;\;\;\;\;\;\;\;\;\;\;\; = {{\kern 1pt} ^\Gamma }I_{{r_j},{\kern 1pt} {s_j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{({\Lambda _{nj}},{\mathfrak{D}_{nj}})}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{({\varepsilon _{nj}},{\mathfrak{E}_{nj}})}_{U + 1,{s_j}}}}\\ \end{array}} \right].\end{array}

Remark 3

Next, taking 𝒴 = 0 and ρj = 1 in (24), then it turns into the Saxena I-function [29]: Γrj,sj,1;mU,V[Z|(Λ1,D1:0),(Λn,Dn)2,V,[1(Λnj,Dnj)]V+1,rj(εn,En)1,U,[1(εnj,Enj)]U+1,sj]=Irj,sj;mU,V[Z|(Λn,Dn)1,V,(Λnj,Dnj)V+1,rj(εn,En)1,U,(εnj,Enj)U+1,sj]. \begin{array}{l}{{\kern 1pt} ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} 1;{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:0),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[1({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[1({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]\\\;\;\;\;\;\;\;\;\;\;\;\; = {\kern 1pt} I_{{r_j},{\kern 1pt} {s_j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{{{({\Lambda _n},{\mathfrak{D}_n})}_{1,V}},{\kern 1pt} {{({\Lambda _{nj}},{\mathfrak{D}_{nj}})}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{({\varepsilon _{nj}},{\mathfrak{E}_{nj}})}_{U + 1,{s_j}}}}\\ \end{array}} \right].\end{array}

Remark 4

Further taking ρj = 1 and m = 1 in (22) and (24), then it turns into the incomplete H-function(see [30, 31] also) of Srivastava [32]: γrj,sj,1;1U,V[Z|(Λ1,D1:Y),(Λn,Dn)2,V,[1(Λnj,Dnj)]V+1,rj(εn,En)1,U,[1(εnj,Enj)]U+1,sj]=γr,sU,V[Z|(Λ1,D1:Y),(Λn,Dn)2,r(εn,En)1,s], \begin{array}{l}{{\kern 1pt} ^\gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} 1;{\kern 1pt} 1}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[1({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[1({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]\\\;\;\;\;\;\;\;\;\;\;\;\; = {\kern 1pt} \gamma _{r,{\kern 1pt} s}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,r}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,s}}}\\ \end{array}} \right],\end{array} and Γrj,sj,1;1U,V[Z|(Λ1,D1:Y),(Λn,Dn)2,V,[1(Λnj,Dnj)]V+1,rj(εn,En)1,U,[1(εnj,Enj)]U+1,sj]=Γr,sU,V[Z|(Λ1,D1:Y),(Λn,Dn)2,r(εn,En)1,s]. \begin{array}{l}{{\kern 1pt} ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} 1;{\kern 1pt} 1}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[1({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[1({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]\\\;\;\;\;\;\;\;\;\;\;\;\; = {\kern 1pt} \Gamma _{r,{\kern 1pt} s}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,r}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,s}}}\\ \end{array}} \right].\end{array}

Remark 5

Next, we take 𝒴 = 0, ρj = 1, and m = 1 in (24), then it turns into the H-function of Srivastava [33]: Γrj,sj,1;1U,V[Z|(Λ1,D1:0),(Λn,Dn)2,V,[1(Λnj,Dnj)]V+1,rj(εn,En)1,U,[1(εnj,Enj)]U+1,sj]=Hr,sU,V[Z|(Λn,Dn)1,r(εn,En)1,s]. \begin{array}{l}{{\kern 1pt} ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} 1;{\kern 1pt} 1}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:0),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[1({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[1({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {\kern 1pt} H_{r,{\kern 1pt} s}^{U,V}{\kern 1pt} \left[ {\mathcal{Z}\Biggl|\begin{array}{*{20}{c}}{{{({\Lambda _n},{\mathfrak{D}_n})}_{1,r}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,s}}}\\ \end{array}} \right].\end{array}

We developed the FC findings linked to the incomplete ℵ-functions, which were influenced by the work of Srivastava et al. [34].

Fractional integral formulas

In this part, we create two formulas for fractional integrals that multiply incomplete ℵ-functions and the generic class of polynomials specified in equation (24) and (4), respectively.

Theorem 3

Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s), (α)+μmin1jU(εjϰj)>max[0,(ς+ς'+ϰϖ),(ς'ϰ')]. \Re (\alpha ) + \mu \mathop {\min }\limits_{1 \le j \le U} \Re \left( {\frac{{{\varepsilon _j}}}{{{\varkappa _j}}}} \right) > \max [0,\Re (\varsigma + {\varsigma ^\prime } + \varkappa - \varpi ),{\kern 1pt} \Re ({\varsigma ^\prime } - {\varkappa ^\prime })].

Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ Vrj,0 ≤ Usj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj; n = 1,2,··· , sj), AQk,Pkk A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate: 0+ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]×Γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xαςς'+ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×Γrj+3,sj+3,ρj;mU,V+3[zxμ|(1αj=1sλjkj,μ),(1α+ς+ς'+ϰϖj=1sλjkj,μ),(εn,En)1,U,(1α+ς+ς'ϖj=1sλjkj,μ),(1α+ς'ϰ'j=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(1αϰ'j=1sλjkj,μ),(1+ς'+ϰϖαj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {{ \times ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\;\;\left. {\;\;\begin{array}{*{20}{c}}{(1 - \alpha + {\varsigma ^\prime } - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + {\varsigma ^\prime } + \varkappa - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

Proof

The LHS of equation (33) is: T1=0+ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]×Γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj]). \begin{array}{l}{T_1} = \mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {{ \times ^\Gamma }\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right).\end{array}

Replace the incomplete ℵ-function and Srivastava polynomial by equation (24) and (4) respectively and by reversing the summation order, we discover the subsequent form: T1=k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!×AQ1,P1(1)AQs,Ps(s)c1k1csks×12πι$Ψ(q,Y)zq(0+ς,ς',ϰ,ϰ',ϖtα+j=1sλjkjμq1)(x)dq, \begin{array}{l}{T_1} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;\Psi (q,\mathcal{Y})\;{z^{ - q}}\left( {\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{\alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q - 1}}} \right)(x)dq,\end{array} where Ψ (q,𝒴) is defined in equation (25).

Using equation (18) of Lemma 1, we discover the subsequent form: T1=k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!×AQ1,P1(1)AQs,Ps(s)c1k1csks×12πι$xαςς'+ϖ+j=1sλjkj1Ψ(q,Y)(zxμ) qΓ(α+j=1sλjkjμq)Γ(ϰ'+α+j=1sλjkjμq)×Γ(ς'+ϰ'+α+j=1sλjkjμq)Γ(ςς'ϰ+ϖ+α+j=1sλjkjμq)Γ(ςς'+ϖ+α+j=1sλjkjμq)Γ(ς'ϰ+ϖ+α+j=1sλjkjμq)dq. \begin{array}{l}{T_1} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;{x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - 1}}{\kern 1pt} {\kern 1pt} \Psi (q,\mathcal{Y})\;{(z{x^\mu })^{ - q}}\frac{{\Gamma (\alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}}{{\Gamma ({\varkappa ^\prime } + \alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}} \times \\\frac{{\Gamma ( - {\varsigma ^\prime } + {\varkappa ^\prime } + \alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q){\kern 1pt} {\kern 1pt} \Gamma ( - \varsigma - {\varsigma ^\prime } - \varkappa + \varpi + \alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}}{{\Gamma ( - \varsigma - {\varsigma ^\prime } + \varpi + \alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q){\kern 1pt} {\kern 1pt} \Gamma ( - {\varsigma ^\prime } - \varkappa + \varpi + \alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}}dq.\end{array}

Finally, after some adjustment of terms , we obtain RHS of equation (33).

Theorem 4

Let ϛ, ϛ', ϰ, ϰ', ϖ,z, α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,···, s), (α)+μmin1jU(εjϰj)>max[0,(ς+ς'+ϰϖ),(ς'ϰ')]. \Re (\alpha ) + \mu \mathop {\min }\limits_{1 \le j \le U} \Re \left( {\frac{{{\varepsilon _j}}}{{{\varkappa _j}}}} \right) > \max [0,\Re (\varsigma + {\varsigma ^\prime } + \varkappa - \varpi ),{\kern 1pt} \Re ({\varsigma ^\prime } - {\varkappa ^\prime })].

Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ Vrj,0 ≤ Usj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn, εnnjnj ∈ ℂ (j = 1,2,··· , rj; n = 1,2,··· , sj), AQk,Pkk A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate: 0+ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xαςς'+ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x) j=1sλjkj×γrj+3,sj+3,ρj;mU,V+3[zxμ|(1αj=1sλjkj,μ),(1α+ς+ς'+ϰϖj=1sλjkj,μ),(εn,En)1,U,(1α+ς+ς'ϖj=1sλjkj,μ),(1α+ς'ϰ'j=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(1αϰ'j=1sλjkj,μ),(1+ς'+ϰϖαj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\;\left. {\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha + {\varsigma ^\prime } - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + {\varsigma ^\prime } + \varkappa - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

Proof

Theorem 4 is proved in the same manner as Theorem 3 with the same conditions.

The following corollary is obtained regarding the Saigo FIO [10] in light of the equation (14).

Corollary 5

Let ϛ, ϰ, ϖ ,z,α ∈and ℜ(ϛ) > 0,μ > 0,λk > 0 (k = 1,2,··· ,s), (α)+μmin1jU(εjϰj)>max[0,(ϰϖ)]. \Re (\alpha ) + \mu \mathop {\min }\limits_{1 \le j \le U} \Re \left( {\frac{{{\varepsilon _j}}}{{{\varkappa _j}}}} \right) > \max [0,\Re (\varkappa - \varpi )].

Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ Vrj, 0 Usj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2, ··· , rj;n = 1,2,··· , sj), AQk,Pkk A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k are real or complex numbers arbitrary constant for k = 1,2,3,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate: 0+ς,ϰ,ϖ(tα1j=1sSQjPj[cjtλj]Γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xαϰ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×Γrj+2,sj+3,ρj;mU,V+2[zxμ|(1αj=1sλjkj,μ),(1α+ϰϖj=1sλjkj,μ),(εn,En)1,U,(1αςϖj=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(1α+ϰj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varkappa - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 2,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 2}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha - \varsigma - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha + \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

The same result can be obtained concerning Saigo FIO for the lower incomplete ℵ-function.

Remark 6

By substituting ϰ = −ϛ and ϰ = 0 in Corollary 5, respectively, we can also get findings for the fractional derivative operators of R-L and E-K.

Theorem 6

Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s), (α)μmin1jU(εjϰj)<1+min[(ϰ),(ς+ς'ϖ),(ς+ϰ'ϖ)]. \Re (\alpha ) - \mu \mathop {\min }\limits_{1 \le j \le U} \Re \left( {\frac{{{\varepsilon _j}}}{{{\varkappa _j}}}} \right) < 1 + \min [\Re ( - \varkappa ),\Re (\varsigma + {\varsigma ^\prime } - \varpi ),\Re (\varsigma + {\varkappa ^\prime } - \varpi )].

Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ Vrj,0 ≤ Usj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj), AQk,Pkk A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate: ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]Γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xαςς'+ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×Γrj+3,sj+3,ρj;mU+3,V[zxμ|(1αj=1sλjkj,μ),(1α+ς+ς'+ϰ'ϖj=1sλjkj,μ),(εn,En)1,U,(1α+ς+ς'ϖj=1sλjkj,μ),(1α+ςϰj=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(1αϰj=1sλjkj,μ),(1+ς+ϰ'ϖαj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U + 3,V}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha + \varsigma - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + \varsigma + {\varkappa ^\prime } - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

Proof

The LHS of equation (39) is: T2=ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]Γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj]). \begin{array}{l}{T_2} = \mathcal{I}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right).\end{array} Replace the incomplete ℵ-function and Srivastava polynomial by equation (24) and (4) respectively and by reversing the summation order, we discover the subsequent form: T2=k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!×AQ1,P1(1)AQs,Ps(s)c1k1csks×12πι$Ψ(q,Y)zq(ς,ς',ϰ,ϰ',ϖt(αj=1sλjkj+μq+1))(x)dq, \begin{array}{l}{T_2} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;\Psi (q,\mathcal{Y})\;{z^{ - q}}\left( {\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{ - ( - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q + 1)}}} \right)(x)dq,\end{array} where Ψ (q,𝒴) is defined in equation (25).

Using equation (19) of Lemma 1, we discover the subsequent form: T2=k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!×AQ1,P1(1)AQs,Ps(s)c1k1csks×12πι$xαςς'+ϖ+j=1sλjkj1Ψ(q,Y)(zxμ) qΓ(1αϰj=1sλjkj+μq)Γ(1αj=1sλjkj+μq)×Γ(1+ς+ς'ϖαj=1sλjkj+μq)Γ(1α+ς+ϰ'ϖj=1sλjkj+μq)Γ(1α+ςϰj=1sλjkj+μq)Γ(1α+ς+ς'+ϰ'ϖj=1sλjkj+μq)dq. \begin{array}{l}{T_2} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;{x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - 1}}{\kern 1pt} {\kern 1pt} \Psi (q,\mathcal{Y})\;{(z{x^\mu })^{ - q}}\frac{{\Gamma (1 - \alpha - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}}{{\Gamma (1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}} \times \\\frac{{\Gamma (1 + \varsigma + {\varsigma ^\prime } - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q){\kern 1pt} \Gamma (1 - \alpha + \varsigma + {\varkappa ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}}{{\Gamma (1 - \alpha + \varsigma - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q){\kern 1pt} \Gamma (1 - \alpha + \varsigma + {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}}dq.\end{array}

Finally, after some adjustment of terms, we obtain RHS of equation (39).

Theorem 7

Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s), (α)μmin1jU(εjϰj)<1+min[(ϰ),(ς+ς'ϖ),(ς+ϰ'ϖ)]. \Re (\alpha ) - \mu \mathop {\min }\limits_{1 \le j \le U} \Re \left( {\frac{{{\varepsilon _j}}}{{{\varkappa _j}}}} \right) < 1 + \min [\Re ( - \varkappa ),\Re (\varsigma + {\varsigma ^\prime } - \varpi ),\Re (\varsigma + {\varkappa ^\prime } - \varpi )]. Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ Vrj,0 ≤ Usj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj), AQk,Pkk A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate: ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xαςς'+ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×γrj+3,sj+3,ρj;mU+3,V[zxμ|(1αj=1sλjkj,μ),(1α+ς+ς'+ϰ'ϖj=1sλjkj,μ),(εn,En)1,U,(1α+ς+ς'ϖj=1sλjkj,μ),(1α+ςϰj=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(1αϰj=1sλjkj,μ),(1+ς+ϰ'ϖαj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U + 3,V}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha + \varsigma - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + \varsigma + {\varkappa ^\prime } - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

Proof

Theorem 7 is proved in the same way as Theorem 6 with the same conditions. The following corollary is obtained regarding the Saigo FIO [10] in light of the equation (15).

Corollary 8

Let ϛ, ϰ, ϖ ,z,α ∈ ℂ and ℜ(ϛ) > 0,μ > 0,λk > 0 (k = 1,2,··· ,s), (α)μmin1jU(εjϰj)<1+min[(ϰ),(ϖ)]. \Re (\alpha ) - \mu \mathop {\min }\limits_{1 \le j \le U} \Re \left( {\frac{{{\varepsilon _j}}}{{{\varkappa _j}}}} \right) < 1 + \min [\Re (\varkappa ),\Re (\varpi )].

Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ Vrj,0 ≤ Usj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2, ··· , rj;n = 1,2,··· , sj), AQk,Pkk A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate: ς,ϰ,ϖ(tα1j=1sSQjPj[cjtλj]Γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xαϰ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×Γrj+2,sj+2,ρj;mU+2,V[zxμ|(1αj=1sλjkj,μ),(1α+ς+ϰ+ϖj=1sλjkj,μ),(εn,En)1,U,(1+ϰαj=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(1α+ϖj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{I}_ - ^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}\left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varkappa - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 2,{\kern 1pt} {s_j} + 2,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U + 2,V}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + \varkappa + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 + \varkappa - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

The same result can be obtained concerning Saigo FIO for the lower incomplete ℵ-function.

Remark 7

By substituting ϰ = −ϛand ϰ = 0 in Corollary 8, respectively, we can also get findings for the fractional derivative operators of R-L and E-K.

Fractional derivative formulas

In this part, we create two formulas for fractional derivative that multiply incomplete ℵ-functions and the generic class of polynomials specified in (24) and (4), respectively.

Theorem 9

Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s), μmax1jU[(εj)Ej]<(α)+min[0,(ςϰ),(ς'+ϰ'+ςϖ)]. \mu \mathop {\max }\limits_{1 \le j \le U} \left[ {\frac{{ - \Re ({\varepsilon _j})}}{{{\mathfrak{E}_j}}}} \right] < \Re (\alpha ) + \min [0,\Re (\varsigma - \varkappa ),\Re ({\varsigma ^\prime } + {\varkappa ^\prime } + \varsigma - \varpi )].

Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ Vrj,0 ≤ Usj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj), AQk,Pkk A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate: D0+ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]Γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xα+ς+ς'ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×Γrj+3,sj+3,ρj;mU,V+3[zxμ|(1αj=1sλjkj,μ),(1αςς'ϰ'+ϖj=1sλjkj,μ),(εn,En)1,U,(1ςς'+ϖαj=1sλjkj,μ),(1ας+ϰj=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(1α+ϰj=1sλjkj,μ),(1ςϰ'+ϖαj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}\left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha + \varsigma + {\varsigma ^\prime } - \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha - \varsigma - {\varsigma ^\prime } - {\varkappa ^\prime } + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \varsigma - {\varsigma ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha - \varsigma + \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha + \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 - \varsigma - {\varkappa ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

Proof

The LHS of equation (45) is: T3=D0+ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]Γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x). \begin{array}{l}{T_3} = \mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x).\end{array} Replace the incomplete ℵ-function and Srivastava polynomial by equation (24) and (4) respectively and by reversing the summation order, we discover the subsequent form: T3=k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!×AQ1,P1(1)AQs,Ps(s)c1k1csks×12πι$Ψ(q,Y)zq(D0+ς,ς',ϰ,ϰ',ϖtα+j=1sλjkjμq1)(x)dq, \begin{array}{l}{T_3} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;\Psi (q,\mathcal{Y})\;{z^{ - q}}\left( {\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{\alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q - 1}}} \right)(x)dq,\end{array} where Ψ (q,𝒴) is defined in equation (25).

Using equation (20) of Lemma 2, we discover the subsequent form: T3=k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!×AQ1,P1(1)AQs,Ps(s)c1k1csks×12πι$xαςς'+ϖ+j=1sλjkj1Ψ(q,Y)(zxμ) qΓ(α+j=1sλjkjμq)Γ(αϰ+j=1sλjkjμq)×Γ(ςϰ+α+j=1sλjkjμq)Γ(α+ς+ς'+ϰ'ϖ+j=1sλjkjμq)Γ(α+ς+ϰ'ϖ+j=1sλjkjμq)Γ(α+ς+ς'ϖ+j=1sλjkjμq)dq. \begin{array}{l}{T_3} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;{x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - 1}}{\kern 1pt} {\kern 1pt} \Psi (q,\mathcal{Y})\;{(z{x^\mu })^{ - q}}\frac{{\Gamma (\alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}}{{\Gamma (\alpha - \varkappa + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}} \times \\\frac{{\Gamma (\varsigma - \varkappa + \alpha + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q){\kern 1pt} \Gamma (\alpha + \varsigma + {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}}{{\Gamma (\alpha + \varsigma + {\varkappa ^\prime } - \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q){\kern 1pt} \Gamma (\alpha + \varsigma + {\varsigma ^\prime } - \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - \mu q)}}dq.\end{array} Finally, after some adjustment of terms, we obtain RHS of equation (45).

Theorem 10

Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s), μmax1jU[(εj)Ej]<(α)+min[0,(ςϰ),(ς'+ϰ'+ςϖ)]. \mu \mathop {\max }\limits_{1 \le j \le U} \left[ {\frac{{ - \Re ({\varepsilon _j})}}{{{\mathfrak{E}_j}}}} \right] < \Re (\alpha ) + \min [0,\Re (\varsigma - \varkappa ),\Re ({\varsigma ^\prime } + {\varkappa ^\prime } + \varsigma - \varpi )]. Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ V rj,0 ≤ Usj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj), AQk,Pkk A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k are real or complex numbers arbitrary constant for k = 1,2,3,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate: D0+ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xα+ς+ς'ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×γrj+3,sj+3,ρj;mU,V+3[zxμ|(1αj=1sλjkj,μ),(1αςς'ϰ'+ϖj=1sλjkj,μ),(εn,En)1,U,(1ςς'+ϖαj=1sλjkj,μ),(1ας+ϰj=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(1α+ϰj=1sλjkj,μ),(1ςϰ'+ϖαj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}\left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha + \varsigma + {\varsigma ^\prime } - \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha - \varsigma - {\varsigma ^\prime } - {\varkappa ^\prime } + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \varsigma - {\varsigma ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha - \varsigma + \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha + \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 - \varsigma - {\varkappa ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

Proof

Theorem 10 is proved in the same way as Theorem 9 with the same conditions.

The following corollary is obtained regarding the Saigo FIO [10] in light of the equation (16).

Corollary 11

Let ϛ, ϰ, ϖ ,z,α ∈ ℂ and ℜ(ϛ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s), μmax1jU[(εj)Ej]<(α)+min[0,(ςϰ),(ςϖ)]. \mu \mathop {\max }\limits_{1 \le j \le U} \left[ {\frac{{ - \Re ({\varepsilon _j})}}{{{\mathfrak{E}_j}}}} \right] < \Re (\alpha ) + \min [0,\Re (\varsigma - \varkappa ),\Re (\varsigma - \varpi )]. Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ Vrj,0 ≤ Usj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj), AQk,Pkk A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate: D0+ς,ϰ,ϖ(tα1j=1sSQjPj[cjtλj]Γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xα+ς+ς'ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×Γrj+2,sj+2,ρj;mU,V+2[zxμ|(1αj=1sλjkj,μ),(1αςϰϖj=1sλjkj,μ),(εn,En)1,U,(1αϰj=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(1αϖj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{D}_{0 + }^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha + \varsigma + {\varsigma ^\prime } - \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 2,{\kern 1pt} {s_j} + 2,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 2}\left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha - \varsigma - \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha - \varkappa - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

The same result can be obtained concerning Saigo fractional derivative operator for the lower incomplete ℵ-function.

Remark 8

By substituting ϰ = −ϛand ϰ = 0 in Corollary 11, respectively, we can also get findings for the fractional derivative operators of R-L and E-K.

Theorem 12

Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s), μmin1jV[1(Λj)Dj]+1>(α)min[0,(ϖςς'V),(ς'ϰ+ϖ),(ϰ')]. \mu \mathop {\min }\limits_{1 \le j \le V} \left[ {\frac{{1 - \Re ({\Lambda _j})}}{{{\mathfrak{D}_j}}}} \right] + 1 > \Re (\alpha ) - \min [0,{\kern 1pt} \Re (\varpi - \varsigma - {\varsigma ^\prime } - V),\Re ( - {\varsigma ^\prime } - \varkappa + \varpi ),{\kern 1pt} - \Re ({\varkappa ^\prime })]. Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ Vrj,0 ≤ Usj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj), AQk,Pkk A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate: Dς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]Γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xα+ς+ς'ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×Γrj+3,sj+3,ρj;mU+3,V[zxμ|(1αj=1sλjkj,μ),(1ας'+ϰ'j=1sλjkj,μ),(εn,En)1,U,(1ςς'+ϖαj=1sλjkj,μ),(1αςς'ϰ+ϖj=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(1α+ϰ'j=1sλjkj,μ),(1ς'ϰ+ϖαj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha + \varsigma + {\varsigma ^\prime } - \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U + 3,V}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha - {\varsigma ^\prime } + {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \varsigma - {\varsigma ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha - \varsigma - {\varsigma ^\prime } - \varkappa + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha + {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 - {\varsigma ^\prime } - \varkappa + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

Proof

The LHS of equation (51) is: T4=Dς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]Γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x). \begin{array}{l}{T_4} = \mathcal{D}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x).\end{array} Replace the incomplete ℵ-function and Srivastava polynomial by equation (24) and (4) respectively and by reversing the summation order, we discover the subsequent form: T3=k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!×AQ1,P1(1)AQs,Ps(s)c1k1csks×12πι$Ψ(q,Y)zq(Dς,ς',ϰ,ϰ',ϖt(αj=1sλjkj+μq+1))(x)dq, \begin{array}{l}{T_3} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;\Psi (q,\mathcal{Y})\;{z^{ - q}}\left( {\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} {t^{ - ( - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q + 1)}}} \right)(x)dq,\end{array} where Ψ (q,𝒴) is defined in equation (25).

Using equation (21) of Lemma 2, we discover the subsequent form: T4=k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!×AQ1,P1(1)AQs,Ps(s)c1k1csks×12πι$xαςς'+ϖ+j=1sλjkj1Ψ(q,Y)(zxμ) qΓ(1α+ϰ'j=1sλjkj+μq)Γ(1αj=1sλjkj+μq)×Γ(1ςς'+ϖαj=1sλjkj+μq)Γ(1ας'ϰ+ϖj=1sλjkj+μq)Γ(1ας'+ϰ'ϖj=1sλjkj+μq)Γ(1αςς'ϰ+ϖj=1sλjkj+μq)dq. \begin{array}{l}{T_4} = \sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}{\kern 1pt} \times A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}\\ \times \frac{1}{{2\pi \iota }}\int_\$ \;{x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi + \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} - 1}}{\kern 1pt} {\kern 1pt} \Psi (q,\mathcal{Y})\;{(z{x^\mu })^{ - q}}\frac{{\Gamma (1 - \alpha + {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}}{{\Gamma (1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}} \times \\\frac{{\Gamma (1 - \varsigma - {\varsigma ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q){\kern 1pt} \Gamma (1 - \alpha - {\varsigma ^\prime } - \varkappa + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}}{{\Gamma (1 - \alpha - {\varsigma ^\prime } + {\varkappa ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q){\kern 1pt} \Gamma (1 - \alpha - \varsigma - {\varsigma ^\prime } - \varkappa + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j} + \mu q)}}dq.\end{array}

Finally, after some adjustment of terms, we obtain RHS of equation (51).

Theorem 13

Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s), μmin1jV[1(Λj)Dj]+1>(α)min[0,(ϖςς'V),(ς'ϰ+ϖ),(ϰ')]. \mu \mathop {\min }\limits_{1 \le j \le V} \left[ {\frac{{1 - \Re ({\Lambda _j})}}{{{\mathfrak{D}_j}}}} \right] + 1 > \Re (\alpha ) - \min [0,{\kern 1pt} \Re (\varpi - \varsigma - {\varsigma ^\prime } - V),\Re ( - {\varsigma ^\prime } - \varkappa + \varpi ),{\kern 1pt} - \Re ({\varkappa ^\prime })]. Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ Vrj,0 ≤ Usj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj), AQk,Pkk A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the outcome shown below is accurate: Dς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xα+ς+ς'ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×γrj+3,sj+3,ρj;mU+3,V[zxμ|(1αj=1sλjkj,μ),(1ας'+ϰ'j=1sλjkj,μ),(εn,En)1,U,(1ςς'+ϖαj=1sλjkj,μ),(1αςς'ϰ+ϖj=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(1α+ϰ'j=1sλjkj,μ),(1ς'ϰ+ϖαj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}\begin{array}{l}\\({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{({\Lambda _n},{\mathfrak{D}_n})_{2,V}},{\kern 1pt} {[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]_{V + 1,{r_j}}}\end{array}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha + \varsigma + {\varsigma ^\prime } - \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\gamma }\aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U + 3,V}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha - {\varsigma ^\prime } + {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \varsigma - {\varsigma ^\prime } + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha - \varsigma - {\varsigma ^\prime } - \varkappa + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha + {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 - {\varsigma ^\prime } - \varkappa + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

Proof

Theorem 13 is proved in the same way as Theorem 12 with the same conditions.

The following corollary is obtained regarding the Saigo fractional derivative operator [10] in light of the equation (16).

Corollary 14

Let ϛ, ϛ', ϰ, ϰ', ϖ ,z,α ∈ ℂ and ℜ(ϖ) > 0,μ > 0,λk > 0 (k = 1,2,3,··· ,s), μmin1jV[1(Λj)Dj]+1>(α)min[0,(ϖςς'V),(ς'ϰ+ϖ),(ϰ')]. \mu \mathop {\min }\limits_{1 \le j \le V} \left[ {\frac{{1 - \Re ({\Lambda _j})}}{{{\mathfrak{D}_j}}}} \right] + 1 > \Re (\alpha ) - \min [0,{\kern 1pt} \Re (\varpi - \varsigma - {\varsigma ^\prime } - V),\Re ( - {\varsigma ^\prime } - \varkappa + \varpi ),{\kern 1pt} - \Re ({\varkappa ^\prime })]. Further the parameters rj, sj, 𝔓 ∈ ℤ+ satisfying 0 ≤ Vrj,0 ≤ Usj for j = 1,2,···m, 𝔇n, 𝔈n, 𝔈nj, 𝔇nj ∈ ℝ+, Λn,εn,Λnj,εnj ∈ ℂ (j = 1,2,··· , rj;n = 1,2,··· , sj), AQk,Pkk A_{{\mathfrak{Q}_k},{\kern 1pt} {\mathfrak{P}_k}}^k are real or complex numbers arbitrary constant for k = 1,2,··· ,s and ρi > 0 for i = 1,2,··· ,m, then the following result holds: Dς,ϰ,ϖ(tα1j=1sSQjPj[cjtλj]Γrj,sj,ρj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xα+ϰ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×Γrj+2,sj+2,ρj;mU+2,V[zxμ|(Λ1,D1:Y),(1αj=1sλjkj,μ),(εn,En)1,U,(1ϰαj=1sλjkj,μ),(1αϰ+ϖj=1sλjkj,μ),(Λn,Dn)2,V,[ρn(Λnj,Dnj)]V+1,rj(1+ς+ϖαj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{D}_ - ^{\varsigma ,{\kern 1pt} \varkappa ,{\kern 1pt} \varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]} \right.\\\left. {^\Gamma \aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha + \varkappa - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }\aleph _{{r_j} + 2,{\kern 1pt} {s_j} + 2,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U + 2,V}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{\kern 1pt} (1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \varkappa - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha - \varkappa + \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 + \varsigma + \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

The same result can be obtained regarding Saigo fractional derivative operator for the lower incomplete ℵ-function.

Remark 9

By substituting ϰ = −ϛ and ϰ = 0 in Corollary 14, respectively, we can also get findings for the fractional derivative operators of R-L and E-K.

Special cases and applications

This section focuses on a few fascinating unique cases of Theorem 3. For other theorems, it is simple for us to obtain comparable findings.

(i) On setting 𝒴 = 0, in Theorem 3 and in consideration of equation (26), then incomplete ℵ-function reduce to the ℵ-function proposed by Sudland [26, 27] and we reach the following conclusion: 0+ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]rj,sj,j;mU,V[ztμ|(Λn,Dn)1,V,[ρn(Λnj,Dnj)]V+1,rj(εn,En)1,U,[ρn(εnj,Enj)]U+1,sj])(x)=xαςς'+ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×rj+3,sj+3,ρj;mU,V+3[zxμ|(1αj=1sλjkj,μ),(1α+ς+ς'+ϰϖj=1sλjkj,μ),(εn,En)1,U,(1α+ς+ς'ϖj=1sλjkj,μ),(1α+ς'ϰ'j=1sλjkj,μ),(Λn,Dn)1,V,[ρn(Λnj,Dnj)]V+1,rj(1αϰ'j=1sλjkj,μ),(1+ς'+ϰϖαj=1sλjkj,μ),[ρn(εnj,Enj)]U+1,sj]. \begin{array}{l}\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]\aleph _{{r_j},{\kern 1pt} {s_j},{\kern 1pt} {\rangle _j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{{{({\Lambda _n},{\mathfrak{D}_n})}_{1,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\ \times \aleph _{{r_j} + 3,{\kern 1pt} {s_j} + 3,{\kern 1pt} {\rho _j};{\kern 1pt} m}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha + {\varsigma ^\prime } - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{({\Lambda _n},{\mathfrak{D}_n})}_{1,V}},{\kern 1pt} {{[{\rho _n}({\Lambda _{nj}},{\mathfrak{D}_{nj}})]}_{V + 1,{r_j}}}}\\{(1 - \alpha - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + {\varsigma ^\prime } + \varkappa - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{[{\rho _n}({\varepsilon _{nj}},{\mathfrak{E}_{nj}})]}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

(ii) Again, setting ρj = 1 in Theorem 3 and in consideration of equation (28), then incomplete ℵ-function reduces to the Incomplete I-function suggested by Bansal and Kumar [28] and we reach the following conclusion: 0+ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]ΓIrj,sj;mU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,V,(Λnj,Dnj)V+1,rj(εn,En)1,U,(εnj,Enj)U+1,sj])(x)=xαςς'+ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×ΓIrj+3,sj+3;mU,V+3[zxμ|(1αj=1sλjkj,μ),(1α+ς+ς'+ϰϖj=1sλjkj,μ),(εn,En)1,U,(1α+ς+ς'ϖj=1sλjkj,μ),(1α+ς'ϰ'j=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,V,(Λnj,Dnj)V+1,rj(1αϰ'j=1sλjkj,μ),(1+ς'+ϰϖαj=1sλjkj,μ),(εnj,Enj)U+1,sj]. \begin{array}{l}\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}{{[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]}^\Gamma }I_{{r_j},{\kern 1pt} {s_j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{({\Lambda _{nj}},{\mathfrak{D}_{nj}})}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{({\varepsilon _{nj}},{\mathfrak{E}_{nj}})}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\{ \times ^\Gamma }I_{{r_j} + 3,{\kern 1pt} {s_j} + 3{\kern 1pt} ;{\kern 1pt} m}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha + {\varsigma ^\prime } - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{{({\Lambda _n},{\mathfrak{D}_n})}_{2,V}},{\kern 1pt} {{({\Lambda _{nj}},{\mathfrak{D}_{nj}})}_{V + 1,{r_j}}}}\\{(1 - \alpha - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + {\varsigma ^\prime } + \varkappa - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{({\varepsilon _{nj}},{\mathfrak{E}_{nj}})}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

(iii) Next, setting 𝒴 = 0 and ρj = 1 in Theorem 3 and in consideration of equation (29), then incomplete ℵ-function reduce to the I-function suggested by Saxena [29] and we reach the following conclusion: 0+ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]Irj,sj;mU,V[ztμ|(Λn,Dn)1,V,(Λnj,Dnj)V+1,rj(εn,En)1,U,(εnj,Enj)U+1,sj])(x)=xαςς'+ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×Irj+3,sj+3;mU,V+3[zxμ|(1αj=1sλjkj,μ),(1α+ς+ς'+ϰϖj=1sλjkj,μ),(εn,En)1,U,(1α+ς+ς'ϖj=1sλjkj,μ),(1α+ς'ϰ'j=1sλjkj,μ),(Λn,Dn)1,V,(Λnj,Dnj)V+1,rj(1αϰ'j=1sλjkj,μ),(1+ς'+ϰϖαj=1sλjkj,μ),(εnj,Enj)U+1,sj]. \begin{array}{l}\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]I_{{r_j},{\kern 1pt} {s_j};{\kern 1pt} m}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{{{({\Lambda _n},{\mathfrak{D}_n})}_{1,V}},{\kern 1pt} {{({\Lambda _{nj}},{\mathfrak{D}_{nj}})}_{V + 1,{r_j}}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} {{({\varepsilon _{nj}},{\mathfrak{E}_{nj}})}_{U + 1,{s_j}}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\ \times I_{{r_j} + 3,{\kern 1pt} {s_j} + 3{\kern 1pt} ;{\kern 1pt} m}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,U}},{\kern 1pt} (1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha + {\varsigma ^\prime } - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{({\Lambda _n},{\mathfrak{D}_n})}_{1,V}},{\kern 1pt} {{({\Lambda _{nj}},{\mathfrak{D}_{nj}})}_{V + 1,{r_j}}}}\\{(1 - \alpha - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + {\varsigma ^\prime } + \varkappa - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{({\varepsilon _{nj}},{\mathfrak{E}_{nj}})}_{U + 1,{s_j}}}}\end{array}} \right].\end{array}

(iv) Further setting ρj = 1 and m = 1 in Theorem 3 and in consideration of equation (31), then incomplete ℵ-function reduce to the incomplete H-function suggested by Srivastava [32] and we reach the following conclusion: 0+ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]Γr,sU,V[ztμ|(Λ1,D1:Y),(Λn,Dn)2,r(εn,En)1,s])(x)=xαςς'+ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×Γr+3,s+3U,V+3[zxμ|(1αj=1sλjkj,μ),(1α+ς+ς'+ϰϖj=1sλjkj,μ),(εn,En)1,s,(1α+ς+ς'ϖj=1sλjkj,μ),(1α+ς'ϰ'j=1sλjkj,μ),(Λ1,D1:Y),(Λn,Dn)2,r(1αϰ'j=1sλjkj,μ),(1+ς'+ϰϖαj=1sλjkj,μ)]. \begin{array}{l}\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]\Gamma _{r,{\kern 1pt} s}^{U,V}{\kern 1pt} \left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{\kern 1pt} {{({\Lambda _n},{\mathfrak{D}_n})}_{2,r}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,s}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\ \times \Gamma _{r + 3,{\kern 1pt} s + 3}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,s}},(1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha + {\varsigma ^\prime } - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} ({\Lambda _1},{\mathfrak{D}_1}:\mathcal{Y}),{\kern 1pt} {{({\Lambda _n},{\mathfrak{D}_n})}_{2,r}}}\\{(1 - \alpha - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + {\varsigma ^\prime } + \varkappa - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu )}\end{array}} \right].\end{array}

(v) Next, setting 𝒴 = 0, ρj = 1, and m = 1 in Theorem 3 and in consideration of equation (32), then incomplete ℵ-function reduce to the H-function suggested by Srivastava [33] and we reach the following conclusion: 0+ς,ς',ϰ,ϰ',ϖ(tα1j=1sSQjPj[cjtλj]Hr,sU,V[ztμ|(Λn,Dn)1,r(εn,En)1,s])(x)=xαςς'+ϖ1k1=0[Q1/P1]ks=0[Qs/Ps](Q1)P1k1(Qs)Psksk1!ks!AQ1,P1(1)AQs,Ps(s)c1k1csks(x)j=1sλjkj×Hr+3,s+3U,V+3[zxμ|(1αj=1sλjkj,μ),(1α+ς+ς'+ϰϖj=1sλjkj,μ),(εn,En)1,s,(1α+ς+ς'ϖj=1sλjkj,μ),(1α+ς'ϰ'j=1sλjkj,μ),(Λn,Dn)1,r(1αϰ'j=1sλjkj,μ),(1+ς'+ϰϖαj=1sλjkj,μ)]. \begin{array}{l}\mathcal{I}_{0 + }^{\varsigma ,{\kern 1pt} {\varsigma ^\prime },{\kern 1pt} \varkappa ,{\kern 1pt} {\varkappa ^\prime },\varpi }{\kern 1pt} \left( {{t^{\alpha - 1}}\prod\limits_{j = 1}^s S_{{\mathfrak{Q}_j}}^{{\mathfrak{P}_j}}[{c_j}{\kern 1pt} {t^{{\lambda _j}}}]H_{r,{\kern 1pt} s}^{U,V}\left[ {z{\kern 1pt} {t^\mu }\Biggl|\begin{array}{*{20}{c}}{{{({\Lambda _n},{\mathfrak{D}_n})}_{1,r}}}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,s}}}\\ \end{array}} \right]} \right)(x)\\ = {x^{\alpha - \varsigma - {\varsigma ^\prime } + \varpi - 1}}\sum\limits_{{\mathfrak{k}_1} = 0}^{[{\mathfrak{Q}_1}/{\mathfrak{P}_1}]} \cdots \sum\limits_{{\mathfrak{k}_s} = 0}^{[{\mathfrak{Q}_s}/{\mathfrak{P}_s}]} \frac{{{{( - {\mathfrak{Q}_1})}_{{\mathfrak{P}_1}{\kern 1pt} {\mathfrak{k}_1}}} \cdots {{( - {\mathfrak{Q}_s})}_{{\mathfrak{P}_s}{\kern 1pt} {\mathfrak{k}_s}}}}}{{{\mathfrak{k}_1}! \cdots {\mathfrak{k}_s}!}}A_{{\mathfrak{Q}_1},{\kern 1pt} {\mathfrak{P}_1}}^{(1)} \cdots A_{{\mathfrak{Q}_s},{\kern 1pt} {\mathfrak{P}_s}}^{(s)}{\kern 1pt} {\kern 1pt} c_1^{{\mathfrak{k}_1}} \cdots c_s^{{\mathfrak{k}_s}}{\kern 1pt} {(x)^{\sum\limits_{j = 1}^s {\lambda _j}{\kern 1pt} {\mathfrak{k}_j}}}\\ \times H_{r + 3,{\kern 1pt} s + 3}^{U,V + 3}{\kern 1pt} \left[ {z{\kern 1pt} {x^\mu }\Biggl|\begin{array}{*{20}{c}}{(1 - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),(1 - \alpha + \varsigma + {\varsigma ^\prime } + \varkappa - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\{{{({\varepsilon _n},{\mathfrak{E}_n})}_{1,s}},(1 - \alpha + \varsigma + {\varsigma ^\prime } - \varpi - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),}\\ \end{array}} \right.\\\left. {\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{array}{*{20}{c}}{(1 - \alpha + {\varsigma ^\prime } - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} {{({\Lambda _n},{\mathfrak{D}_n})}_{1,r}}}\\{(1 - \alpha - {\varkappa ^\prime } - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu ),{\kern 1pt} (1 + {\varsigma ^\prime } + \varkappa - \varpi - \alpha - \sum\limits_{j = 1}^s {\lambda _j}{\mathfrak{k}_j},\mu )}\end{array}} \right].\end{array}

Remark 10

The known results provided by Saxena and Saigo [35] are simple to be achieved if the generic class of polynomials SLh1,,hs S_L^{{h_1}, \cdots ,{h_s}} is restricted to unity and the incomplete ℵ-function is reduced to Fox’s H-function.

If we set incomplete ℵ-function to ℵ-function, then we may easily achieve the results that Saxena and Kumar [36] have already provided.

The known results provided by Saxena and Ram [37] are simple to be achieved if the generic class of polynomials SLh1,,hs S_L^{{h_1}, \cdots ,{h_s}} is restricted to unity and the incomplete ℵ-function is reduced to ℵ-function.

Theorems 4 and Theorem 5 provided by Bansal et al. [24] are simply obtained if we set the generic class of polynomials SLh1,,hs S_L^{{h_1}, \cdots ,{h_s}} in Theorem 3 and Theorem 6 to unity.

Conclusion

In the current paper, we looked into a variety of incomplete ℵ-function based FC image formulae as well as the generic class of polynomials connected to the MSM operators. The incomplete ℵ-functions are the generalized form of various other special functions. Also, Srivastava polynomial generalize various other polynomials like: Hermite polynomial, Jacobi polynomial, Laguerre polynomial, Gegenbauer polynomial, Legendre polynomial, Tchebycheff polynomial, Gould-Hopper Polynomial and several other polynomials. Additionally, the MSM fractional operators generalize Saigo, R-L and E-K FC operators. One may get a variety of image formulae that include a class of special functions by taking the mentioned fact into consideration [23, 38,39,40] as limiting instances of the primary outcomes.

Declarations
Conflict of interest 

Authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

The authors hereby declare that there is no any funding interest.

Author’s contribution

N.-Conceptualization. S.B.-Data Curation, Writing-Review Editing. S.D.P.-Software, Writing-Original Draft. K.S.N.-Supervisor. S.R.M.-Methodology. All authors read and approved the final submitted version of this manuscript. All authors contributed equally to the manuscript and approved the final manuscript.

Acknowledgement

The authors express their sincere thanks to the editor and reviewers for their fruitful comments and suggestions that improved the quality of the manuscript.

Data availability statement

All data that support the findings of this study are included within the article.

Using of AI tools

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

eISSN:
2956-7068
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Computer Sciences, other, Engineering, Introductions and Overviews, Mathematics, General Mathematics, Physics