Deep Learning with 3D ResNets for Comprehensive Dual-Lane Speed Climbing Video Analysis
oraz
02 mar 2025
O artykule
Data publikacji: 02 mar 2025
Zakres stron: 17 - 34
DOI: https://doi.org/10.2478/ijcss-2025-0002
Słowa kluczowe
© 2025 Y. Xie, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Comparison table for classification, labelling and coding of video status for dual lane speed climbing_
left flash, right flash | 1-1 | 0 | 237 |
left flash, right slip | 1-2 | 1 | 86 |
left flash, right fall | 1-3 | 2 | 57 |
left flash, right empty | 1-4 | 3 | 72 |
left slip, right flash | 2-1 | 4 | 93 |
left slip, right slip | 2-2 | 5 | 45 |
left slip, right fall | 2-3 | 6 | 20 |
left slip, right empty | 2-4 | 7 | 31 |
left fall, right flash | 3-1 | 8 | 44 |
left fall, right slip | 3-2 | 9 | 10 |
left fall, right fall | 3-3 | 10 | 29 |
left fall, right empty | 3-4 | 11 | 15 |
left empty, right flash | 4-1 | 12 | 90 |
left empty, right slip | 4-2 | 13 | 20 |
left empty, right fall | 4-3 | 14 | 23 |
Table of 3D ResNet model classification report
0 (L-Flash; R-Flash) | 0.91 | 0.95 | 0.93 | 594 |
1 (L-Flash; R-Slip) | 0.85 | 0.91 | 0.88 | 190 |
2 (L-Flash; R-Fall) | 0.95 | 0.82 | 0.88 | 131 |
3 (L-Flash; R-Empty) | 0.95 | 0.96 | 0.95 | 164 |
4 (L-Slip; R-Flash) | 0.94 | 0.82 | 0.88 | 244 |
5 (L-Slip; R-Slip) | 0.93 | 0.92 | 0.93 | 125 |
6 (L-Slip; R-Fall) | 0.89 | 0.98 | 0.93 | 57 |
7 (L-Slip; R-Empty) | 0.95 | 0.94 | 0.95 | 83 |
8 (L-Fall; R-Flash) | 0.93 | 0.93 | 0.93 | 124 |
9 (L-Fall; R-Slip) | 0.95 | 0.95 | 0.95 | 20 |
10 (L-Fall; R-Fall) | 0.84 | 0.91 | 0.88 | 58 |
11 (L-Fall; R-Empty) | 1.00 | 0.79 | 0.88 | 24 |
12 (L-Empty; R-Flash) | 0.99 | 0.98 | 0.99 | 250 |
13 (L-Empty; R-Slip) | 0.99 | 0.99 | 0.99 | 72 |
14 (L-Empty; R-Fall) | 0.98 | 1.00 | 0.99 | 52 |
Performance Comparison of 3D ResNet, 2D CNN and C3D in Terms of Accuracy and Loss_
3D ResNet | 92.78% | 0.57 |
2D CNN | 25.62% | 2.42 |
C3D | 27.15% | 2.51 |