Otwarty dostęp

Modified Bivariate Poisson-Lindley Model: Properties and Applications in Soccer

,  oraz   
01 sie 2024

Zacytuj
Pobierz okładkę

Ahsan-ul-Haq, M., Al-Bossly, A., El-Morshedy, M., & Eliwa, M. S. (2022). Poisson XLindley distribution for count data: statistical and reliability properties with estimation techniques and inference. Computational Intelligence and neuroscience, 2022(1), 6503670. Search in Google Scholar

Baio, G., & Blangiardo, M. (2010). Bayesian hierarchical model for the prediction of football results. Journal of Applied Statistics, 37(2), 253-264. Search in Google Scholar

Best D. J., Rayner J. C. W. (1997). Crockett.s test of fit for the Bivariate Poisson. Biometrical Journal, 39(4):423.430. Search in Google Scholar

Boshnakov, G., Kharrat, T., & McHale, I. G. (2017). A bivariate Weibull count model for forecasting association football scores. International Journal of Forecasting, 33(2), 458-466. Search in Google Scholar

Bradley, R. A. and Terry, M. E. (1952). Rank analysis of incomplete blockdesigns: I. The method of paired comparisons. Biometrika, 39, 324-345. Search in Google Scholar

Cheon S., Song S.H., Jung B.C. (2009). Tests for independence in a bivariatenegative binomial model. J. Korean Statist. Soc., 38: 185-190. Search in Google Scholar

Chouia, S., & Zeghdoudi, H. (2021). The XLindley distribution: Properties and application. Journal of Statistical Theory and Applications, 20(2), 318-327. Search in Google Scholar

Constantinou, A. C., Fenton, N. E., & Neil, M. (2012). pi-football: A Bayesian network model for forecasting Association Football match outcomes. Knowledge-Based Systems, 36, 322-339. Search in Google Scholar

Cox, D.R. and D.V. Hinkley, (1979). Theoretical Statistics. 1st Edn., CRCPress, ISBN-10: 0412161605, pp: 528. Search in Google Scholar

McNeil, D. (1979). A QUICK TEST OF FIT OF A BIVARIATE DISTRIBUTION. In Interactive Statistics: Proceedings of the Applied Statistics Conference, Sydney, February 8-9, 1979 (p. 185). North-Holland. Search in Google Scholar

Dixon, M. J., Coles, S. G. (1997). Modelling association football scores andinefficiencies in the football betting market. Applied Statistics, 46(2), 265. Search in Google Scholar

Famoye, F. and P.C. Consul, (1995). Bivariate generalized Poisson distribution with some applications. Metrika, 42: 127-138. Search in Google Scholar

Famoye, F. (2010). On the bivariate negative binomial regression model. Journal of Applied Statistics, 37(6), 969-981. Search in Google Scholar

Ghitany M. E., Atieh B., Nadarajah S. (2008). Lindley distribution and itsapplications. Math. Comput. Simulation, 78, pp. 493-506. Search in Google Scholar

Goddard, J. (2005). Regression models for forecasting goals and matchresults in association football. International Journal of Forecasting, 21(2), 331-340. Search in Google Scholar

Goddard, J., & Asimakopoulos, I. (2004). Forecasting football results and the efficiency of .xed-odds betting. Journal of Forecasting, 23(1), 51-66. Search in Google Scholar

Holgate, P., (1964). Estimation for the bivariate Poisson distribution. Biometrika, 51: 241-245. Search in Google Scholar

Johnson, N.L., S. Kotz and N. Balakrishnan, (1997). Discrete Multivariate Distributions. 1st Edn., Wiley, New York, ISBN-10: 0471128449, pp: 328. Search in Google Scholar

Jung, B.C., M. Jhun and S.M. Han, (2009). Score test for overdispersionin the bivariate negative binomial models. J. Statist. Comput. Simulat., 79:11-24. Search in Google Scholar

Karlis, D. and I. Ntzoufras, (2003). Analysis of sports data by using Bivariate Poisson models. Statistician, 52: 381-393. Search in Google Scholar

Karlis, D., &Ntzoufras, I. (2009). Bayesian modelling of football outcomes: using the Skellam.s distribution for the goal difference. IMA Journal of Management Mathematics, 20(2), 133-145. Search in Google Scholar

Kocherlakota, S., & Kocherlakota, K. (2017). Bivariate discrete distributions. CRC Press. Search in Google Scholar

Khodja, N., Gemeay, A. M., Zeghdoudi, H., Karakaya, K., Alshangiti, A. M., Bakr, M. E., Hussam, E. (2023). Modeling voltage real data set by a new version of Lindley distribution. IEEE Access, 11, 67220-67229. Search in Google Scholar

Lakshminarayana, J., S.N.N. Pandit and K.S. Rao, (1999). On a bivariatePoisson distribution. Communicat. Statist. Theory Methods, 28: 267-276. Search in Google Scholar

Lindley, D. V. (1958). Fiducial distributions and Bayes’ theorem. Journal of the Royal Statistical Society. Series B (Methodological), 102-107. Search in Google Scholar

Lord, D. and S.R. Geedipally, (2011). The negative binomial-Lindley distribution as a tool for analyzing crash data characterized by a large amount of zeros. Accident Anal. Prevent., 43: 1738-1742. Search in Google Scholar

Loukas S. and Kemp C. D. (1986), The Index of Dispersion Test for the Bivariate Poisson Distribution. International Biometric Society, Vol. 42, No. 4,pp. 941-948. Search in Google Scholar

Maher,M. J. (1982).Modelling association footballscores. Statistica Neerlandica, 36(3),109.118. Search in Google Scholar

Mahmoudi E. and Zakerzadeh H. (2010), Generalized Poisson-Lindley distribution, Communications in Statistics- Theory and Methods, 39, 1785 - 1798. Search in Google Scholar

Marek, P., .edivá, B., & µToupal, T. (2014). Modeling and prediction of icehockey match results. Journal of quantitative analysis in sports, 10(3), 357-365. Search in Google Scholar

Mitchell, C. R., & Paulson, A. S. (1981). A new bivariate negative binomial distribution. Naval Research Logistics Quarterly, 28(3), 359-374. Search in Google Scholar

Owen, A. (2011). Dynamic Bayesian forecasting models of football matchoutcomes with estimation of the evolution variance parameter. IMA Journal of Management Mathematics, 22(2), 99-113. Search in Google Scholar

Paul, S.R. and N.I. Ho, (1989). Estimation in the bivariate poisson distribution and hypothesis testingconcerning independence. Communicat. Statist.Theory Methods. 18: 1123-1133. Search in Google Scholar

Reep, C., & Benjamin, B. (1968). Skill and chance in association football. Journal of the Royal Statistical Society. Series A (General), 131(4), 581-585. Search in Google Scholar

Sadeghkhani, A., & Ahmed, S. E. (2020). The application of predictive distribution estimation in multiple-inflated poisson models to ice hockey data. Model Assisted Statistics and Applications, 15(2), 127-137. Search in Google Scholar

Sankaran, M., (1970). The discrete Poisson-Lindley distribution. Biometrics, 26: 145-149. Search in Google Scholar

Seghier, F. Z., Zeghdoudi, H., & Raman, V. (2023). A Novel Discrete Distribution: Properties and Application Using Nipah Virus Infection Data Set. European Journal of Statistics, 3, 3-3. Search in Google Scholar

Shanker, R. (2016a). The discrete poisson-amarendra distribution. Int. J. Stat. Distrib. Appl, 2(2), 14-21. Search in Google Scholar

Shanker R. (2016b), The discrete Poisson-Sujatha distribution. International Journal of Probability and Statistics. 5(1):1-9. Search in Google Scholar

Shanker R. (2017), The discrete poisson-garima distribution. Biometrics & Biostatistics International Journal, 5(2):48-53. Search in Google Scholar

Seghier, F. Z., Ahsan-ul-Haq, M., Zeghdoudi, H., & Hashmi, S. (2023). A new generalization of poisson distribution for over-dispersed, count data: mathematical properties, regression model and applications. Lobachevskii Journal of Mathematics, 44(9), 3850-3859. Search in Google Scholar

Tsokos, A., Narayanan, S., Kosmidis, I., Baio, G., Cucuringu, M., Whitaker, G., & Király, F. (2019). Modeling outcomes of soccer matches. Machine Learning, 108, 77-95. Search in Google Scholar

Wheatcroft, E. (2021). Forecasting football matches by predicting match statistics. Journal of Sports Analytics, 7(2), 77-97. Search in Google Scholar

Zamani, H., Faroughi, P., & Ismail, N. (2014, June). Bivariate Poisson-weighted exponential distribution with applications. In AIP Conference Proceedings (Vol. 1602, No. 1, pp. 964-968). American Institute of Physics. Search in Google Scholar

Zamani, H., P. Faroughi and N. Ismail, (2015). Bivariate Poisson-Lindley Distribution with Application, Journal of Mathematics and Statistics, 11 (1): 1-6. Search in Google Scholar

Zeghdoudi, H., & Nedjar, S. (2017). On Poisson pseudo Lindley distribution: Properties and applications. Journal of probability and statistical science, 15(1), 19-28. Search in Google Scholar

Shahin, S. (2023). Sports Data Analysis by using Bivariate Poisson Models in the Bayesian Framework. Quaid-e-Awam University Research Journal of Engineering Science and Technology, 21(1), 7-15. Search in Google Scholar

Wheatcroft, E. (2021). Forecasting football matches by predicting match statistics. Journal of Sports Analytics, 7(2), 77-97. Search in Google Scholar

Singh, A., Scarf, P., & Baker, R. (2023). A unified theory for bivariate scores in possessive ball-sports: the case of handball. European Journal of Operational Research, 304(3), 1099-1112. Search in Google Scholar

[1] Data Set I :https://www.the-sports.org/football-soccer-2021-2022-german-bundesligaepr114545.html. 2023 Search in Google Scholar

[2] Data Set II :https://www.the-sports.org/football-soccer-2019-2020-german-bundesligaepr98318.html. 2024 Search in Google Scholar