Otwarty dostęp

Pavement Damage Recognition Based on Deep Learning

 oraz   
16 cze 2025

Zacytuj
Pobierz okładkę

Hao S, Shao L, Wang S. A Faster RCNN Airport Pavement Crack Detection Method Based on Attention Mechanism [J]. Academic Journal of Science and Technology, 2022, 4(2): 129-132. Hao S Shao L Wang S. A Faster RCNN Airport Pavement Crack Detection Method Based on Attention Mechanism [J] . Academic Journal of Science and Technology , 2022 , 4 ( 2 ): 129 - 132 . Search in Google Scholar

Redmon J, and Farhadi A. YOLOv3: An Incremental Improvement [J]. CoRR, 2018, 1804: 02767. Redmon J Farhadi A. YOLOv3: An Incremental Improvement [J] . CoRR , 2018 , 1804 : 02767 . Search in Google Scholar

Wu L, Duan Z, Liang C. Research on asphalt pavement disease detection based on improved YOLOv5s[J]. Journal of Sensors, 2023, 2023(1): 2069044. Wu L Duan Z Liang C. Research on asphalt pavement disease detection based on improved YOLOv5s[J] . Journal of Sensors , 2023 , 2023 ( 1 ): 2069044 . Search in Google Scholar

DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale [J]. arXiv preprint arXiv:2010.11929, 2020. DOSOVITSKIY A BEYER L KOLESNIKOV A An image is worth 16x16 words: Transformers for image recognition at scale [J] . arXiv preprint arXiv:2010.11929 , 2020 . Search in Google Scholar

CARIONN, MASSAF, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 2020 European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229. CARIONN MASSAF SYNNAEVE G End-to-end object detection with transformers[C] // Proceedings of the 2020 European Conference on Computer Vision . Cham : Springer International Publishing , 2020 : 213 - 229 . Search in Google Scholar

Zhu X, Su W, Lu L, et al. Deformable detr: Deformable transformers for end-to-end object detection[J/OL]. arXiv preprint arXiv, 2020[2024-11-18]. https://doi.org/10.48550/arXiv.2010.04159 Zhu X Su W Lu L Deformable detr: Deformable transformers for end-to-end object detection[J/OL] . arXiv preprint arXiv , 2020 [2024-11-18]. https://doi.org/10.48550/arXiv.2010.04159 Search in Google Scholar

CHEN Q, CHENX, WANGJ, et al. Group detr: Fast detr training with group-wise one-to-many assignment [C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6633-6642. CHEN Q CHENX WANGJ Group detr: Fast detr training with group-wise one-to-many assignment [C] // Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway : IEEE , 2023 : 6633 - 6642 . Search in Google Scholar

Zhang H, Li F, Liu S, et al. Dino: Detr with improved denoising anchor boxes for end-to-end object detection [J]. arXiv preprint arXiv:2203.03605, 2022. Zhang H Li F Liu S Dino: Detr with improved denoising anchor boxes for end-to-end object detection [J] . arXiv preprint arXiv:2203.03605 , 2022 . Search in Google Scholar

Zong Z, Song G, Liu Y. Detrs with collaborative hybrid assignments training [C]//Proceedings of the IEEE/CVF international conference on computer vision. 2023: 6748-6758. Zong Z Song G Liu Y. Detrs with collaborative hybrid assignments training [C] // Proceedings of the IEEE/CVF international conference on computer vision . 2023 : 6748 - 6758 . Search in Google Scholar

Chen Y, Zhang C, Chen B, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Computers in Biology and Medicine, 2024, 170: 107917. Chen Y Zhang C Chen B Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J] . Computers in Biology and Medicine , 2024 , 170 : 107917 . Search in Google Scholar

Zhao Y, Lv W, Xu S, et al. Detrs beat yolos on real-time object detection [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 16965-16974. Zhao Y Lv W Xu S Detrs beat yolos on real-time object detection [C] // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . 2024 : 16965 - 16974 . Search in Google Scholar

He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778. He K Zhang X Ren S Deep residual learning for image recognition [C] // Proceedings of the IEEE conference on computer vision and pattern recognition . 2016 : 770 - 778 . Search in Google Scholar

Wang C Y, Yeh I H, Mark Liao H Y. Yolov9: Learning what you want to learn using programmable gradient information [C]//European conference on computer vision. Cham: Springer Nature Switzerland, 2024: 1-21. Wang C Y Yeh I H Mark Liao H Y. Yolov9: Learning what you want to learn using programmable gradient information [C] // European conference on computer vision . Cham : Springer Nature Switzerland , 2024 : 1 - 21 . Search in Google Scholar

Ding X, Zhang Y, Ge Y, et al. UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio Video Point Cloud Time-Series and Image Recognition [C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 5513-5524. Ding X Zhang Y Ge Y UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio Video Point Cloud Time-Series and Image Recognition [C] // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . 2024 : 5513 - 5524 . Search in Google Scholar

Sunkara R, Luo T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects [C]//Joint European conference on machine learning and knowledge discovery in databases. Cham: Springer Nature Switzerland, 2022: 443-459. Sunkara R Luo T. No more strided convolutions or pooling: A new CNN building block for low-resolution images and small objects [C] // Joint European conference on machine learning and knowledge discovery in databases . Cham : Springer Nature Switzerland , 2022 : 443 - 459 . Search in Google Scholar

Cui Y, Ren W, Knoll A. Omni-Kernel Network for Image Restoration [C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2024, 38(2): 1426-1434. Cui Y Ren W Knoll A. Omni-Kernel Network for Image Restoration [C] // Proceedings of the AAAI Conference on Artificial Intelligence . 2024 , 38 ( 2 ): 1426 - 1434 . Search in Google Scholar

Arya D, Maeda H, Ghosh S K, et al. RDD2020: An annotated image dataset for automatic road damage detection using deep learning [J]. Data in brief, 2021, 36: 107133. Arya D Maeda H Ghosh S K RDD2020: An annotated image dataset for automatic road damage detection using deep learning [J] . Data in brief , 2021 , 36 : 107133 . Search in Google Scholar

Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes (voc) challenge[J]. International journal of computer vision, 2010, 88: 303-338. Everingham M Van Gool L Williams C K I The pascal visual object classes (voc) challenge[J] . International journal of computer vision , 2010 , 88 : 303 - 338 . Search in Google Scholar

Ren S, He K, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks [J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(6): 1137-1149. Ren S He K Girshick R Faster R-CNN: Towards real-time object detection with region proposal networks [J] . IEEE transactions on pattern analysis and machine intelligence , 2016 , 39 ( 6 ): 1137 - 1149 . Search in Google Scholar

Khanam R, Hussain M. Yolov11: An overview of the key architectural enhancements [J]. arXiv preprint arXiv:2410.17725, 2024. Khanam R Hussain M. Yolov11: An overview of the key architectural enhancements [J] . arXiv preprint arXiv:2410.17725 , 2024 . Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Informatyka, Informatyka, inne