Otwarty dostęp

Antibacterial potential of extracts and metabolites isolated from the endophytic fungus Chaetomium cochliodes against phytopathogenic bacteria


Zacytuj

Arnold, A.E., Maynard, Z., Gilbert, G.S. Coley, P.D. and Kursar, T.A. 2000. Are tropical fungal endophytes hyper diverse? Ecology Letters, 3: 267-274. Search in Google Scholar

Atmosukarto, I., Castillo, U., Hess, W.M., Sears, J. and Strobel, G. 2005. Isolation and characterization of Muscodor albus I-41.3s, a volatile antibiotic producing fungus. Plant Sciences, 169: 854–861. Search in Google Scholar

Barnett, H. and Hunter, B. 1998. Illustrated genera of imperfect fungi; A comprehensive resource for recognizing, identifying, and learning various aspects of imperfect fungi (4th ed). St. Pau, MN: APS Press. Search in Google Scholar

Blechert, S., Brodschelm, W., Hölder, S., Kammerer, L., Kutchan, T.M., Mueller, M.J., Xia, Z.Q. and Zenk, M.H. 1995. The octadecanoic pathway: Signal molecules for the regulation of secondary pathways. Proceeding of the National Academy of Sciences USA, 92: 4099–4105. Search in Google Scholar

Bultreys, A. and Kaluzna, M. 2010. Bacterial cankers caused by Pseudomonas syringae on stone fruit species with special emphasis on the pathovars syringae and morsprunorum race 1 and race 2. Journal of Plant Pathology, 92: 21−33. Search in Google Scholar

Carballeira, N.M. 2008. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Progress in Lipid Research, 47: 50–61. Search in Google Scholar

Cerdeiras, M.P., Fernández, J., Soubes, M., Vero, S., Ferreira, F., Moyna, P., Olano, I. and Vázquez, A. 2000. A new antibacterial compound from Ibicella lutea. Journal Ethnopharmacology, 73: 521–525. Search in Google Scholar

Dariush, S., Ebadi, A.A., Khoshkdaman, M., Rabiei, B. and Elahinia, A. 2012. Characterising the genetic diversity of Pseudomonas syringae pv. syringae isolated from rice and wheat in Iran. Plant Protection Science, 48: 162−169. Search in Google Scholar

Desbois, A. P. and Smith, V.J. 2010. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85: 1629–1642. Search in Google Scholar

Desbois, A. P., Mearns-Spragg, A. and Smith V.J. 2009. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Marine Biotechnology, 11: 45–52. Search in Google Scholar

Ellof, J.N. 1998. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Medica, 64: 711–713. Search in Google Scholar

Farmer, E.E. and Ryan, C.A. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell, 4: 129–134. Search in Google Scholar

Gunatilaka, A.A.L. 2006. Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. Journal of Natural Products, 69: 509–526. Search in Google Scholar

Hamel, F.G. 2009. Preliminary report: inhibition of cellular proteasome activity by free fatty acids. Metabolism, 58: 1047–1049. Search in Google Scholar

Han, J., Hamilton, J.A., Kirkland, J.L., Corkey, B.E. and Guo, W. 2003. Medium-chain oil reduces fat mass and down-regulates expression of adipogenic genes in rats. Obesity Research, 11: 734– 744. Search in Google Scholar

Hardoim, P.R., van Overbeek, L.S., Berg, G., Pirttilä, A.M., Compant, S., Campisano, A., Döring, M. and Sessitsch, A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79: 293-320. Search in Google Scholar

Hellwig, V., Grothe, T., Mayer-Bartschmid, A., Endermann, R., Geschke, F.-U., Henkel, T. and Stadler M. 2002. Altersetin, a new antibiotic from cultures of endophytic Alternaria spp. Journal of Antibiotics, 55: 881–892. Search in Google Scholar

Kabara, J.J., Swieczkowski, D.M., Conley, A.J. and Truant, J.P. 1972. Fatty acids and derivatives as antimicrobial agents. Antimicrobial Agents and Chemotherapy, 2: 23–28. Search in Google Scholar

Kenny, J.G., Ward, D., Josefsson, E., Jonsson, I.-M., Hinds, J., Rees, H.H., Lindsay, J.A., Tarkowski, A. and Horsburgh, M.J. 2009. The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One, 4: e4344. Search in Google Scholar

Kurihara, H., Goto, Y., Aida, M., Hosokawa, M. and Takahashi, K. 1999. Antibacterial activity against cariogenic bacteria and the inhibition of insoluble glucan production by free fatty acids obtained from dried Gloiopeltis furcata. Fisheries Science, 65: 129–132. Search in Google Scholar

Kusari, S, Verma, V.C., Lamshoft, M. and Spiteller, M. 2012. An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World Journal of Microbiology and Biotechnology, 28: 1287–1294. Search in Google Scholar

Lugtenberg, B.J.J., Caradus, J.R. and Johnson, L.J. 2016. Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, 92: fiw194. Search in Google Scholar

Malhadas, C., Malheiro, R. and Pereira, J.A. 2017. Antimicrobial activity of endophytic fungi from olive tree leaves. World Journal of Microbiology and Biotechnology, 33: 46. Search in Google Scholar

Manganyi, M.C., Tchatchouang, C.D.K., Regnier, T., Bezuidenhout, C.C. and Ateba C.N. 2019. Bioactive compound produced by endophytic fungi isolated from Pelargonium sidoides against selected bacteria of clinical importance. Mycobiology, 47: 335–339. Search in Google Scholar

Martins, P.M.M., Merfa, M.V., Takita, M.A. and De Souza, A.A. 2018. Persistence in phytopathogenic bacteria: Do we know enough? Front Microbiology, 9: 1099. Search in Google Scholar

Mousa, W.K. and Raizada, M.N. 2013. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiology, 4: 65. Search in Google Scholar

Peeters, N., Guidot, A., Vailleaz, F., Valls, M. 2013. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Molecular Plant Pathology, 14: 651–662. Search in Google Scholar

Pérombelon, M.C.M, Kelman, A. 1980. Ecology of the soft rot Erwinias. Annual Review of Phytopathology, 18: 361-387. Search in Google Scholar

Phongpaichit, S., Rungjindamai, N., Rukachaisirikul, V. and Sakayaroj, J. 2006. Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunology and Medical Microbiology, 48: 367–372. Search in Google Scholar

Pinheiro, E.A.A., Carvalho, J.M., Dos Santos, D.C.P., Feitosa, A.D.O., Marinho, P.S.B., Guilhon, G.M.S.P., de Souza, A.L., da Silva, F.M.A. and Marinho, A.M.R. 2013. Antibacterial activity of alkaloids produced by endophytic fungus Aspergillus sp. EJC08 isolated from medical plant Bauhinia guianensis. Natural Product Research, 27: 1633–1638. Search in Google Scholar

Saad, M.M.G. and Badry, H.H. 2020. Phytohormones producing fungal Endophytes enhance nutritional status and suppress pathogenic fungal infection in tomato. Journal of Agricultural Science and Technology, 22:1383-1395. Search in Google Scholar

Sado-Kamdem, S.L., Vannini, L. and Guerzoni, M.E. 2009. Effect of α-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus. International Journal Food Microbiology, 129: 288–294. Search in Google Scholar

Sahani, K. and Hemalatha, K.P.J. 2018. Diversity of endophytic fungi from Tribulus terrestris L. from Eastern Ghat of India (first report). International Journal of Pharmaceutical Sciences Review and Research, 50: 197-206. Search in Google Scholar

Sahani, K., Thakur, D. and Hemalath, K.P.J. 2019. Phytochemical analysis and antioxidant activity of endophytic fungi Curvularia aeria MTCC 12847 isolated from Tribulus terrestris L. leaf. DOI: https://doi.org/10.21203/rs.2.16923/v1. Search in Google Scholar

Santos, I.P.D., Silva, L.C.N.D., Silva, M.V.D., Araújo, J.M.D., Cavalcanti, M.D.S. and de Menezes Lima, V.L. 2015. Antibacterial activity of endophytic fungi from leaves of Indigofera suffruticosa Miller (Fabaceae). Front Microbiology, 6: 350. Search in Google Scholar

Smith, R.A., Mikanatha, N.M. and Read A.F. 2015. Antibiotic resistance: a primer and call to action. Health Communication, 30: 309–314. Search in Google Scholar

Stadler, M., Mayer, A., Anke, H. and Sterner, O. 1994. Fatty acids and other compounds with nematicidal activity from cultures of Basidiomycetes. Planta Medica, 60: 128-132. Search in Google Scholar

Strange, R.N. and Scott, P.R. 2005. Plant disease: A threat to global food security. Annual Review of Phytopathology, 43: 83–116. Search in Google Scholar

Strobel, G., Daisy, B. and Castillo U. 2004. Natural products from endophytic microorganisms. Journal of Natural Products, 67: 257-268. Search in Google Scholar

Subban, K., Subramani, R. and Johnpaul, M., 2013. A novel antibacterial and antifungal phenolic compound from the endophytic fungus Pestalotiopsis mangiferae. Natural Product Research, 27: 1445–1449. Search in Google Scholar

Sumayo, M.S., Kwon, D.K. and Ghim, S.Y. 2014. Linoleic acid-induced expression of defense genes and enzymes in tobacco. Journal of Plant Physiology, 171: 1757–1762. Search in Google Scholar

Tan, R.X. and Zou, W.X. 2001. Endophytes: a rich source of functional metabolites. Natural Product Reports, 18: 448-459. Search in Google Scholar

Tanvir, R., Javeed, A. and Bajwa, A.G. 2017. Endophyte bioprospecting in South Asian medicinal plants: an attractive resource for biopharmaceuticals. Applied Microbiology and Biotechnology, 101: 1831–1844. Search in Google Scholar

Tanvir, R., Javeed, A. and Rehman Y. 2018. Fatty acids and their amide derivatives from endophytes: new therapeutic possibilities from a hidden source. FEMS Microbiology Letters, 365: fny114. Search in Google Scholar

Verhaegen, M., Mahillon, J., Caulier, S., Mingeot-Leclercq, M.-P., Bragard, C. 2024. Data collection on antibiotics for control of plant pathogenic bacteria. EFSA supporting publication 2024:EN-8522. 195 pp. doi:10.2903/sp.efsa.2024. EN-8522. Search in Google Scholar

Walters, D., Raynor, L., Mitchell, A., Walker, R. and Walker, K. 2004. Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia, 157: 87-90. Search in Google Scholar

White, T.J., Bruns, T., Lee, S. and Taylor, J. 1990. in: Innis A, Gelfand DH, Sninsky JJ (eds), PCR Protocols, Academic Press, San Diego, USA, 315-322. Search in Google Scholar

Wille, J.J. and Kydonieus, A. 2003. Palmitoleic acid isomer (C16:1delta6) in human skin sebum is effective against gram-positive bacteria. Skin Pharmacology and Applied Skin Physiology, 16: 176–87. Search in Google Scholar

Won, S.-R., Hong, M.-J., Kim, Y.-M., Li, C.-Y., Kim, J.-W. and Rhee, H.-I. 2007. Oleic acid: An efficient inhibitor of glucosyltransferase. FEBS Letters, 581: 4999–5002. Search in Google Scholar

Wu, W.-B., Yue, G.-C., Huang, Q.-L., Sun, L.-L. and Zhang, W. 2014. A new compound from an endophytic fungus Alternaria tenuissima. Journal of Asian Natural Product Research, 16: 777-782. Search in Google Scholar

Zheng, C.J., Yoo, J.S., Lee, T.G., Cho, H.Y., Kim, Y.H. and Kim, W.G. 2005. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Letters, 579: 5157–5162. Search in Google Scholar

eISSN:
2732-656X
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, Plant Science, Zoology, other