Zacytuj

Altshul A. D. (1982) Gidravlicheskie soprotivleniya [Hydraulic Resistances], Moscow, Nedra, 224 p. (in Russian). Search in Google Scholar

Bolshakov V. A., Konstantinov Yu. M., Popov V. N. et al (1984) Spravochnik po gidravlike [Handbook of Hydraulics], Kyiv, Vyshcha shkola, 343 p. (in Russian). Search in Google Scholar

Brkić D. (2016) A note on explicit approximations to Colebrook’s friction factor in rough pipes under highly turbulent cases, International Journal of Heat and Mass Transfer, 93, 513–515, URL: https://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.109. Search in Google Scholar

Choo Y.-M., Kim J.-G., Park S.-H. (2021) A Study on the Friction Factor and Reynolds Number Relationship for Flow in Smooth and Rough Channels, Water, 13 (12), 1714 URL: https://doi.org/10.3390/w13121714. Search in Google Scholar

Colebrook C. F. (1939) Turbulence flow in pipes with particular Reference to the transition region between the smooth and rough pipe lines, Journal of Institute of Civil Engineering, 11, 133–156, https://dx.doi.org/10.1680/ijoti.1939.13150. Search in Google Scholar

Dutta P., Nandi N. (2015) Effect of Reynolds Number and Curvature Ratio on Single Phase Turbulent Flow in Pipe Bends, Mechanics and Mechanical Engineering, 19 (1), 5–16. Search in Google Scholar

Fluid flow friction loss – Hazen-Williams coefficients, Retrieved April 18, 2023, from. URL: https://www.engineeringtoolbox.com/hazen-williams-coecients-d−798.html. Search in Google Scholar

Gaev E. A. (2014) Lyudvig Prandtl v gidromekhanike proshlogo i budushchego. [Ludwig Prandl in fluid mechanics past and future], Applied hydromechanics, 16 (2), 3–16. Search in Google Scholar

Kalenik M., Chalecki M., Wichowski P. (2020) Real Values of Local Resistance Coefficients during Water Flow through Welded Polypropylene T-Junctions, Water, 12 (3), 895, https://doi.org/10.3390/w12030895. Search in Google Scholar

Khlapuk M. M., Moshynskyi V. S., Bezusiak O. V., Volk L. R. (2019) Do rozvytku teorii rukhu potoku v truboprovodakh pry turbulentnomu rezhymi [Regarding the Development of the Theory of Flow in Pipelines Under Turbulent Regime], Visnyk NUVHP [Bulletin of NUWEE], 3 (87), 3–18 (in Ukrainian). Search in Google Scholar

Khlapuk M. M., Moshynskyi V. S., Bezusiak O. V., Volk L. R. (2020) Doslidzhennia profiliu oserednenoi shvydkosti potoku v truboprovodakh pry turbulentnomu rezhymi v oblasti hidravlichno hladkoho oporu [Study of the Flow Averaged Velocity Profile in Pipelines under Turbulent Regime in the Sphere of Hydraulic Smooth Resistance], Visnyk NUVHP [Bulletin of NUWEE], 1 (89), 3-11 (in Ukrainian). Search in Google Scholar

Konstantinov Yu. M., Hizha O. O. (2002) Tekhnichna mechanika ridyn ta hazu [Technical Mechanics of Fluids and Gases] Pidruchnyk [Textbook], Kyiv, Vyshcha shkola, 277 p. (in Ukrainian). Search in Google Scholar

Meier G. E .A. (Ed.) (2000) Ludwig Prandtl. Ein Fuehrer in der Stroemungslehre. Biographische Artikel zum Werk Ludwig Prandtls [Ludwig Prandtl, a Leader in Fluid Dynamics. Biographical Articles on the Work of Ludwig Prandtl], Fr. Vieweg and Sohn Verlag, Braunschweig/Wiesbaden, 220 p. (in German). Search in Google Scholar

McKoen B. J. (2005) A new friction factor relationship for fully developed pipe flow, B. J. McKoen, M. V. Zagarola, A. J. Smits, J. Fluid Mech., 538, 429–443. Search in Google Scholar

Pérez Pupo J. R., Navarro-Ojeda M. N., Pérez-Guerrero J. N., Batista-Zaldívar M. A. (2019) On the explicit expressions for the determination of the friction factor in turbulent regime, Revista Mexicana De Ingeniería Química, 19 (1), 313–334, URL: https://doi.org/10.24275/rmiq/fen497. Search in Google Scholar

Shaikh M. M., Massan S.-ur-R., Wagan A. I. (2015) A new explicit approximation to Colebrook’s friction factor in rough pipes under highly turbulent cases, International Journal of Heat and Mass Transfer, 88, 538–543. Search in Google Scholar

Shevelyov F. A. (1953) Issledovanie osnovnykh gidravlicheskikh zakonomernostei turbulentnogo dvizheniya v trubakh [Investigation of the Basic Hydraulic Regularities of Turbulent Pipe Flow], Moscow, Stroyizdat, 208 p. (in Russian). Search in Google Scholar

Tkachuk O. A. (2022) Hidravlichni rozrakhunky truboprovidnykh system vodopostachannia ta vodovidvedennia: Monohraphiia [Hydraulic Calculations of Pipeline Systems for Water Supply and Drainage: Monograph], Rivne, NUWEE, 183 p. (in Ukrainian). Search in Google Scholar

Wichowski P., Kalenik M., Lal A., Morawski D., Chalecki M. (2021) Hydraulic and Technological Investigations of a Phenomenon Responsible for Increase of Major Head Losses in Exploited Cast-Iron Water Supply Pipes, Water, 13 (11), 1604, http://doi.org/10.3390/w13111604 URL: https://www.mdpi.com/2073-4441/13/11/1604. Search in Google Scholar

eISSN:
2300-8687
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other