This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Chien YC, Stocker DP, Hegde UG, Dunn-Rankin D (2022) Electric-field effects on methane coflow flames aboard the international space station (ISS): ACME E-FIELD flames. Combustion and Flame246: 112443ChienYCStockerDPHegdeUGDunn-RankinD2022Electric-field effects on methane coflow flames aboard the international space station (ISS): ACME E-FIELD flamesCombustion and Flame246112443Search in Google Scholar
Dehghani P, de Ris JL, Quintiere JG (2023) Demonstrating steady burning for small flat materials in microgravity in a quiescent ambient. Proceedings of the Combustion Institute39: 3949–3958DehghaniPde RisJLQuintiereJG2023Demonstrating steady burning for small flat materials in microgravity in a quiescent ambientProceedings of the Combustion Institute3939493958Search in Google Scholar
Dietrich DL, Nayagam V, Hicks MC, Ferkul PV, Dryer FL, Farouk T, Shaw BD, Suh HK, Choi MY, Liu YC, Avedisian T, Williams FA (2014) Droplet combustion experiments aboard the international space station. Microgravity Science and Technology26: 65–76DietrichDLNayagamVHicksMCFerkulPVDryerFLFaroukTShawBDSuhHKChoiMYLiuYCAvedisianTWilliamsFA2014Droplet combustion experiments aboard the international space stationMicrogravity Science and Technology266576Search in Google Scholar
Dietrich DL, Ross HD, Shu Y, Chang P, T’ien JS (2000) Candle flames in non-buoyant atmospheres. Combustion Science and Technology156: 1–24DietrichDLRossHDShuYChangPT’ienJS2000Candle flames in non-buoyant atmospheresCombustion Science and Technology156124Search in Google Scholar
Diez FJ, Aalburg C, Sunderland PB, Urban DL, Yuan ZG, Faeth GM (2009) Soot properties of laminar jet diffusion flames in microgravity. Combustion and Flame156: 1514–1524DiezFJAalburgCSunderlandPBUrbanDLYuanZGFaethGM2009Soot properties of laminar jet diffusion flames in microgravityCombustion and Flame15615141524Search in Google Scholar
Ferranti F, Bianco MD, Pacelli C (2021) Advantages and limitations of current microgravity platforms for Space Biology Research. Applied Sciences11: 68FerrantiFBiancoMDPacelliC2021Advantages and limitations of current microgravity platforms for Space Biology ResearchApplied Sciences1168Search in Google Scholar
Giassi D, Cao S, Bennett BAV, Stocker DP, Takahashi F, Smooke MD, Long MB (2016) Analysis of CH* concentration and flame heat release rate in laminar coflow diffusion flames under microgravity and normal gravity. Combustion and Flame167: 198–206GiassiDCaoSBennettBAVStockerDPTakahashiFSmookeMDLongMB2016Analysis of CH* concentration and flame heat release rate in laminar coflow diffusion flames under microgravity and normal gravityCombustion and Flame167198206Search in Google Scholar
Irace PH, Lee HJ, Waddell K, Tan L, Stocker DP, Sunderland PB, Axelbaum RL (2021) Observations of long duration microgravity spherical diffusion flames aboard the International Space Station. Combustion and Flame229: 111373IracePHLeeHJWaddellKTanLStockerDPSunderlandPBAxelbaumRL2021Observations of long duration microgravity spherical diffusion flames aboard the International Space StationCombustion and Flame229111373Search in Google Scholar
Irace PH, Waddell KA, Constales D, Kim M, Yablonsky G, Sunderland PB, Axelbaum RL (2023a) On the existence of steady-state gaseous microgravity spherical diffusion flames in the presence of radiation heat loss. Proceedings of the Combustion Institute39: 1721–1729IracePHWaddellKAConstalesDKimMYablonskyGSunderlandPBAxelbaumRL2023aOn the existence of steady-state gaseous microgravity spherical diffusion flames in the presence of radiation heat lossProceedings of the Combustion Institute3917211729Search in Google Scholar
Irace PH, Waddell KA, Constales D, Sunderland PB, Axelbaum RL (2023b) Critical temperature and reactant mass flux for radiative extinction of ethylene microgravity spherical diffusion flames at 1 bar. Proceedings of the Combustion Institute39: 1905–1913IracePHWaddellKAConstalesDSunderlandPBAxelbaumRL2023bCritical temperature and reactant mass flux for radiative extinction of ethylene microgravity spherical diffusion flames at 1 barProceedings of the Combustion Institute3919051913Search in Google Scholar
Kim M, Waddell KA, Sunderland PB, Nayagam V, Stocker PB, Dietrich DL, Ju Y, Williams FA, Irace P, Axelbaum RL (2023) Spherical gas-fueled cool diffusion flames. Proceedings of the Combustion Institute39: 1647–1656.KimMWaddellKASunderlandPBNayagamVStockerPBDietrichDLJuYWilliamsFAIracePAxelbaumRL2023Spherical gas-fueled cool diffusion flamesProceedings of the Combustion Institute3916471656Search in Google Scholar
Li Y, Liao YTT, Ferkul PV, Johnston MC, Bunnell C (2021) Experimental study of concurrent-flow flame spread over thin solids in confined space in microgravity. Combustion and Flame227: 39–51.LiYLiaoYTTFerkulPVJohnstonMCBunnellC2021Experimental study of concurrent-flow flame spread over thin solids in confined space in microgravityCombustion and Flame2273951Search in Google Scholar
Mazzucato M, Robinson DKR (2018) Co-creating and directing Innovation Ecosystems? NASA’s changing approach to public-private partnerships in low-earth orbit. Technological Forecasting & Social Change136: 166–177MazzucatoMRobinsonDKR2018Co-creating and directing Innovation Ecosystems? NASA’s changing approach to public-private partnerships in low-earth orbitTechnological Forecasting & Social Change136166177Search in Google Scholar
McCraney J, Kern V, Bostwick JB, Daniel S, Steen PH (2022b) Oscillations of Drops with Mobile Contact Lines on the International Space Station: Elucidation of Terrestrial Inertial Droplet Spreading. Physical Review Letters129: 084501.McCraneyJKernVBostwickJBDanielSSteenPH2022bOscillations of Drops with Mobile Contact Lines on the International Space Station: Elucidation of Terrestrial Inertial Droplet SpreadingPhysical Review Letters129084501Search in Google Scholar
McCraney J, Ludwicki J, Bostwick J, Daniel S, Steen P (2022a) Coalescence-induced droplet spreading: Experiments aboard the International Space Station. Physics of Fluids34: 122110.McCraneyJLudwickiJBostwickJDanielSSteenP2022aCoalescence-induced droplet spreading: Experiments aboard the International Space StationPhysics of Fluids34122110Search in Google Scholar
Motil BJ, Ramè E, Salgi P, Taghavi M, Balakotaiah V (2020) Gas–liquid flows through porous media in microgravity: The International Space Station Packed Bed Reactor Experiment. AIChE Journal67: e17031MotilBJRamèESalgiPTaghaviMBalakotaiahV2020Gas–liquid flows through porous media in microgravity: The International Space Station Packed Bed Reactor ExperimentAIChE Journal67e17031Search in Google Scholar
Mudawar I, Devahdhanush VS, Darges SJ, Hasan MM, Nahra HK, Balasubramaniam R, Mackey JR (2024) Microgravity flow boiling experiments with liquid-vapor mixture inlet onboard the International Space Station. International Journal of Heat and Mass Transfer224: 125299MudawarIDevahdhanushVSDargesSJHasanMMNahraHKBalasubramaniamRMackeyJR2024Microgravity flow boiling experiments with liquid-vapor mixture inlet onboard the International Space StationInternational Journal of Heat and Mass Transfer224125299Search in Google Scholar
Rojas-Alva U, Jomaas G (2022) A historical overview of experimental solid combustion research in microgravity. Acta Astronautica194: 363–375Rojas-AlvaUJomaasG2022A historical overview of experimental solid combustion research in microgravityActa Astronautica194363375Search in Google Scholar
Ronney PD (1998) Understanding combustion processes through microgravity research. Symposium (International) on Combustion27: 2485–2506RonneyPD1998Understanding combustion processes through microgravity researchSymposium (International) on Combustion2724852506Search in Google Scholar
Sridhar K, Narayanan V, Bhavnani S (2023) Asymmetric Sawtooth and Cavity-Enhanced Nucleation-Driven Transport (ASCENT) Experiment aboard the International Space Station – Microgravity Outcomes. In 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Vol. 22, p 1–7.SridharKNarayananVBhavnaniS2023Asymmetric Sawtooth and Cavity-Enhanced Nucleation-Driven Transport (ASCENT) Experiment aboard the International Space Station – Microgravity OutcomesIn22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)2217Search in Google Scholar
Sridhar K, Narayanan V, Bhavnani SH (2024) Enhanced heat transfer in microgravity from asymmetric sawtooth microstructure with engineered cavities. International Journal of Heat and Mass Transfer222: 125158.SridharKNarayananVBhavnaniSH2024Enhanced heat transfer in microgravity from asymmetric sawtooth microstructure with engineered cavitiesInternational Journal of Heat and Mass Transfer222125158Search in Google Scholar
Thomas VA, Prasad NS, Reddy CAM (2000) Microgravity research platforms. Current Science79: 336–340ThomasVAPrasadNSReddyCAM2000Microgravity research platformsCurrent Science79336340Search in Google Scholar
Wagner E (2021) Research Flights on Blue Origin’s New Shepard. Gravitational and Space Research9: 62–67WagnerE2021Research Flights on Blue Origin’s New ShepardGravitational and Space Research96267Search in Google Scholar
Weislogel MM, Jenson R, Chen Y, Collicott SH, Klatte J, Dryer M (2009) The capillary flow experiments aboard the International Space Station: Status. Acta Astronautica65: 861–869WeislogelMMJensonRChenYCollicottSHKlatteJDryerM2009The capillary flow experiments aboard the International Space Station: StatusActa Astronautica65861869Search in Google Scholar
Yu J, Pawar A, Plawsky JL, Chao DF (2022) The effect of bubble nucleation on the performance of a wickless heat pipe in microgravity. npj Microgravity8: 12YuJPawarAPlawskyJLChaoDF2022The effect of bubble nucleation on the performance of a wickless heat pipe in microgravitynpj Microgravity812Search in Google Scholar
Zea L, Warren L, Ruttley T, Mosher T, Kelsey L, Wagner E (2024) Orbital Reef and commercial low Earth orbit destinations—upcoming space research opportunities. npj Microgravity10: 43ZeaLWarrenLRuttleyTMosherTKelseyLWagnerE2024Orbital Reef and commercial low Earth orbit destinations—upcoming space research opportunitiesnpj Microgravity1043Search in Google Scholar