Otwarty dostęp

Compact Heat Rejection System Utilizing Integral Variable Conductance Planar Heat Pipe Radiator for Space Application


Zacytuj

Figure 1.

Schematic of compact heat rejection with variable conductance planar heat pipe (VCPHP) radiator.
Schematic of compact heat rejection with variable conductance planar heat pipe (VCPHP) radiator.

Figure 2.

Steady-state planar heat pipe operation calculation flow chart.
Steady-state planar heat pipe operation calculation flow chart.

Figure 3.

(A) Brass planar heat pipe. (B) Liquid Crystal Polymer heat pipe (LCP-HP).
(A) Brass planar heat pipe. (B) Liquid Crystal Polymer heat pipe (LCP-HP).

Figure 4.

Predicted vapor and liquid pressure drops of BHP and PHP during operation.
Predicted vapor and liquid pressure drops of BHP and PHP during operation.

Figure 5.

BHP temperature distributions with different heat inputs.
BHP temperature distributions with different heat inputs.

Figure 6.

Temperature distribution of BHP dry-run test.
Temperature distribution of BHP dry-run test.

Figure 7.

Temperature distribution of LCP-HP.
Temperature distribution of LCP-HP.

Figure 8.

Wall temperature distributions of VCPHP under different sink temperature fields (Q=200 W).
Wall temperature distributions of VCPHP under different sink temperature fields (Q=200 W).

Figure 9.

Wall temperature distributions of VCPHP with different heat loads (Tamb=250 K).
Wall temperature distributions of VCPHP with different heat loads (Tamb=250 K).

Figure 10.

Wall temperature distributions of VCPHP with different heat loads (Tamb=50 K).
Wall temperature distributions of VCPHP with different heat loads (Tamb=50 K).

UT2

Greek letters
β Liquid void fraction
δ Liquid layer thickness
ε Emissivity
ρ Density
σ Surface tension (for ethanol: 22.8x10-3 N/m @T=20°C)
σr Stefan-Boltzmann constant
ν Kinematic viscosity
μ Dynamic viscosity

UT1

A Area
Ac Dispersion constant (for ethanol: 2.2x10-21 J)
c Accommodation coefficient
Dh Hydraulic diameter
f Fin thickness
fRe Poiseuille number
h Heat transfer coefficient
hfg Latent heat of vaporization
k Thermal conductivity
L Length
mj Mass flux rate through liquid-vapor interface
M Molecular weight
N Number of the channels
P Pressure
Q Heat load
q Heat flux
R Gas constant
Reff Effective thermal resistance
rc Radius of meniscus
T Temperature
TR Turn-down ratio
u Velocity in x-direction
U Wind speed
V Volume
W Width
w Half width of the channel
wr Half meniscus surface area per unit length

UT3

Subscripts and superscripts
amb Ambient
b Groove base
c Condenser
e Evaporator
g Non-condensable gas
i Inactive region
in Input
l Liquid phase region
lv Liquid-vapor interface
max Maximum
min Minimum
out Output
r Reservoir
s Solid wall
surface Surface
t Total
v Vapor phase region
w Wick structure
0 Reference value

Specifications of the two planar heat pipes.

Brass Heat Pipe (BHP) Liquid Crystal Polymer Heat Pipe (LCP-HP)
Length (cm) 27.94 5.08
Width (cm) 13.97 5.08
Thick (cm) 1.27 0.8334
Wall thickness (mm) 3.175 3.175
Grooves type Triangular Rectangular
Grooves dimensions
72 grooves per plate 32 grooves per plate

Properties of brass and CoolPoly® E2 Liquid Crystal Polymer.

Brass Liquid Crystal Polymer
Density (g/cm3) 8.7 1.6
Thermal conductivity 109 20
(W/mK)
Tensile Modulus (Gpa) 100 -125    24.3
Tensile Strength (Mpa) 200 80
Flexural Modulus (Gpa) 39    32.3
Flexural Strength (Mpa) 235  139
eISSN:
2332-7774
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other, Materials Sciences, Physics