1. bookTom 15 (2021): Zeszyt 2 (December 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1802-1115
Pierwsze wydanie
26 Jun 2014
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
access type Otwarty dostęp

Landslides in Central Asia: a review of papers published in 2000–2020 with a particular focus on the importance of GIS and remote sensing techniques

Data publikacji: 30 Dec 2021
Tom & Zeszyt: Tom 15 (2021) - Zeszyt 2 (December 2021)
Zakres stron: 134 - 145
Otrzymano: 27 Jun 2021
Przyjęty: 15 Nov 2021
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1802-1115
Pierwsze wydanie
26 Jun 2014
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Abstract

Landslides are among the major environmental hazards with large-scale socio-economic and environmental impacts that jeopardize socio-economic wellbeing in mountainous regions. Landslides are due to the interaction of several complex factors such as local or regional geology, geomorphology, topography, and seismic motions. The goal of this study is to review published articles on causes and effects of landslides in Central Asia throughout 2000–2020. In line with this goal, we have collected (using Scopus database), reviewed, and analyzed 79 papers published during 2000–2020. Our results revealed an increasing number of landslide studies in Central Asia during the period under investigation, with authors from Belgium dominating in the published outcomes (28% of total), followed by authors from Central-Asian countries. After then, the paper analyses the mostly applied models and frequently identified driving conditions and triggers of landsliding, such as aspect, altitude, soil types, precipitation, earthquakes and human interventions. Geographic information system (GIS) and remote sensing (RS) had not commonly been used in the papers between 2000 and 2010, and they have progressively been applied in landslide studies in Central Asia in the last decade. According to our analysis, geotechnical, geophysical and statistical methods were preferably used for the landslide studies in Central Asia.

Keywords

Aleshin Y, Torgoev I (2013) Landslide prediction based on neural network modelling. Springer Berlin, Heidelberg.10.1007/978-3-642-31319-6_41 Search in Google Scholar

Aleshin Y, Torgoev I (2014) Slope dynamic geomorphology of the Mailuu-Suu area aspects of long-term prediction. Springer Cham.10.1007/978-3-319-04999-1_48 Search in Google Scholar

Alshembari R, Parolai S, Boxberger T, Sandron D, Pilz M, Sylacheva N (2020) Seasonality in site response: an example from two historical earthquakes in kazakhstan. Seismological research letters 91(1):415 426.10.1785/0220190114 Search in Google Scholar

Baimakhan A, Seinassinova A, Baimakhan R, Rysbayeva A, Moldakunova N (2020) Determining the physical and mechanical properties of two-phase soil for landslide slopes of the northern tien shan. International journal of engineering research and technology 13(4):699 705.10.37624/IJERT/13.4.2020.699-705 Search in Google Scholar

Baimakhan R, Danaev N, Baimakhan A, Salgaraeva G, Ylyasova G, Kurmanbekkizy N, Dashdorj S (2008) Recovery of anisotropic slope after the landslide. In Liu H, Deng A, Chu J, eds., Geotechnical engineering for disaster mitigation and rehabilitation page 611 615. Springer Berlin, Heidelberg.10.1007/978-3-540-79846-0_75 Search in Google Scholar

Baimakhan R, Rysbayeva G, Dasibekov A, Seinasinova A, Salgaraeva G, Baimakhan A, Kurmanbekkizy N (2011) Peculiarities of formation and activation of landslide processes in region of northern tien-shan. In 14th Asian regional conference on soil mechanics and geotechnical engineering page 1 4. Search in Google Scholar

Danneels G, Pirard E, Torgoev I, Havenith H (2006) Creation of 3d geophysical model and hazard analysis of unstable slopes: Case-studies of kainama and taran-bazar (kyrgyzstan. In IAMG 2006−11th international congress for mathematical geology: Quantitative geology from multiple sources page 1041 1048. Search in Google Scholar

Danneels G, Bourdeau C, Torgoev I, Havenith H (2008) Geophysical investigation and dynamic modelling of unstable slopes: case-study of kainama (kyrgyzstan. Geophysical journal international 175(1):17 34.10.1111/j.1365-246X.2008.03873.x Search in Google Scholar

Evans S, Mugnozza G, Strom A, Hermanns R, Ischuk A, Vinnichenko S (2006) Landslides from massive rock slope failure and associated phenomena. In Evans S, Mugnozza G, Strom A, Hermanns R, eds., Landslides from massive rock slope failure page 03 52. Springer Dordrecht.10.1007/978-1-4020-4037-5_1 Search in Google Scholar

Haberland C, Abdybachaev U, Schurr B, Wetzel H, Roessner S, Sarnagoev A, Janssen C (2011) Landslides in southern kyrgyzstan: understanding tectonic controls. Eos transactions American geophysical union 92(20):169 170.10.1029/2011EO200001 Search in Google Scholar

Havenith H, Jongmans D, Abdrakhmatov K, Trefois P, Delvaux D, Torgoev I (2000) Geophysical investigations of seismically induced surface effects: case study of a landslide in the suusamyr valley kyrgyzstan. Surveys in geophysics 21(4):351 370.10.1023/A:1006788808145 Search in Google Scholar

Havenith H, Jongmans D, Faccioli E, Abdrakhmatov K, Bard P (2002) Site effect analysis around the seismically induced ananevo rockslide kyrgyzstan. Bulletin of the seismological society of America 92(8):3190 3209.10.1785/0120010206 Search in Google Scholar

Havenith H, Strom A, Jongmans D, Abdrakhmatov A, Delvaux D, Tréfois P (2003) Seismic triggering of landslides part a: Field evidence from the northern tien shan. Natural hazards and earth system sciences 3(1/2):135 149.10.5194/nhess-3-135-2003 Search in Google Scholar

Havenith H, Torgoev I, Meleshko A, Alioshin Y, Torgoev A, Danneels G (2006) Landslides in the mailuu-suu valley kyrgyzstan— hazards and impacts. Landslides 3(2):137 147.10.1007/s10346-006-0035-2 Search in Google Scholar

Havenith H, Strom A, Torgoev I, Torgoev A, Lamair L, Ischuk A, Abdrakhmatov K (2015) Tien shan geohazards database: Earthquakes and landslides. Geomorphology 249:16 31.10.1016/j.geomorph.2015.01.037 Search in Google Scholar

Ischuk N (2013) The origin of the mountain river dams in tajikistan. In Margottini C, Canuti P, Sassa K, eds., Landslide science and practice 6 page 13 17. Springer Berlin, Heidelberg.10.1007/978-3-642-31319-6_2 Search in Google Scholar

Juliev M, Pulatov A, Hubl J (2017) Natural hazards in mountain regions of uzbekistan: a review of mass movement processes in tashkent province international. journal of scientific & engineering research 8(2):1102–1108.10.14299/ijser.2017.02.013 Search in Google Scholar

Juliev M, Mergili M, Mondal I, Nurtaev B, Pulatov A, Hübl J (2019) Comparative analysis of statistical methods for landslide susceptibility mapping in the bostanlik district uzbekistan. Science of the total environment 653:801 814.10.1016/j.scitotenv.2018.10.43130759606 Search in Google Scholar

Kadirhodjaev A, Kadavi P, Lee C, Lee S (2018) Analysis of the relationships between topographic factors and landslide occurrence and their application to landslide susceptibility mapping: a case study of mingchukur uzbekistan. Geosciences journal 22(6):1053 1067.10.1007/s12303-018-0052-x Search in Google Scholar

Kadirhodjaev A, Rezaie F, Lee M, Lee S (2020) Landslide susceptibility assessment using an optimized group method of data handling model. ISPRS international journal of geoinformation 9(10):566 574.10.3390/ijgi9100566 Search in Google Scholar

Kalmet’eva Z, Moldobekov B, Abdybachaev U (2019) Correlation of the state of crustal stresses seismicity and landslide activity (fergana basin tien shan. Geodinamika i tektonofizika 10(4):1 10.10.5800/GT-2019-10-4-0454 Search in Google Scholar

Kojogulov K, Nikolskay O (2008) Danger of the landslide activity of slopes on the railway line china—kyrgyzstan—uzbekistan on site karasu-torugart. In Liu H, Deng A, Chu J, eds., Geotechnical engineering for disaster mitigation and rehabilitation page 526 532. Springer Berlin, Heidelberg.10.1007/978-3-540-79846-0_62 Search in Google Scholar

Mavlyanov P, Zakhidova D, Abdurakhmanov A (2008) Complex approaches for the study of landslide areas in mountainous pilot areas of uzbekistan using remote sensing data and gis techniques. Water and energy abstracts 18(1):35 36. Search in Google Scholar

Niyazov R, Nurtaev B (2013) Evaluation of landslides in uzebekistan caused by the joint impact of precipitation and deepfocus pamir-hindu earthquakes. In Sassa K, Rouhban B, Briceño S, McSaveney M, He B, eds., Landslides: Global risk preparedness page 253 265. Search in Google Scholar

Nurtaev B, Niyazov R (2014) Landslides of liquefaction caused by single source of impact pamir-hindu kush earthquakes in central asia. In Sassa K, Canuti P, Yin Y, eds., Landslide science for a safer geoenvironment page 225 232. Search in Google Scholar

Pourghasemi H, Yansari Z, Panagos P, Pradhan B (2018) Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016. Arabian journal of geosciences 11(9):1 12.10.1007/s12517-018-3531-5 Search in Google Scholar

Pánek T, Korup O, Minár J, Hradecký J (2016) Giant landslides and highstands of the caspian sea. Geology 44(11):939 942.10.1130/G38259.1 Search in Google Scholar

Roessner S, Wetzel H, Kaufmann H, Sarnagoev A (2005) Potential of satellite remote sensing and gis for landslide hazard assessment in southern kyrgyzstan (central asia. Natural Hazards 35 (3):395 416.10.1007/s11069-004-1799-0 Search in Google Scholar

Sabitova N, Stelmakh A, Tajibaeva N (2020) Mapping of landslides and landslide processes in uzbekistan using relief plastics (on the example of the chirchik basin. InterCarto InterGIS 26(1):572 583.10.35595/2414-9179-2020-1-26-572-583 Search in Google Scholar

Sanhueza-Pino K, Korup O, Hetzel R, Munack H, T WJ, Dunning S, Kubik P (2011) Glacial advances constrained by 10be exposure dating of bedrock landslides kyrgyz tien shan. Quaternary research 76(3):295 304.10.1016/j.yqres.2011.06.013 Search in Google Scholar

Saponaro A, Pilz M, Wieland M, Bindi D, Moldobekov B, Parolai S (2015) Landslide susceptibility analysis in data-scarce regions: the case of kyrgyzstan. Bulletin of engineering geology and the environment 74(4):1117 1136.10.1007/s10064-014-0709-2 Search in Google Scholar

Sidle R, Ochiai H (2006) Landslide processes, prediction, and land use: Water resources monograph 18. Natural resources forum 31:322–326. Search in Google Scholar

Strom A, Abdrakhmatov K (2009) International summer school on rockslides and related phenomena in the kokomeren river valley tien shan kyrgyzstan. In Sassa K, Canuti P, eds., Landslides– disaster risk reduction page 223 227. Springer Berlin, Heidelberg.10.1007/978-3-540-69970-5_12 Search in Google Scholar

Strom A, Abdrakhmatov K (2014) International summer school on rockslides and related phenomena in the Kokomeren river valley Tien Shan Kyrgyzstan: IPL-106-2 Project and WCoE. Springer Cham.10.1007/978-3-319-04999-1_19 Search in Google Scholar

Strom A, Abdrakhmatov K (2019) International summer school on rockslides and related phenomena in the kokomeren river valley. Landslides 16:1055–1057.10.1007/s10346-019-01173-z Search in Google Scholar

Torgoev A, Havenith H (2013) Landslide susceptibility hazard and risk mapping in Mailuu-Suu Kyrgyzstan. Springer Berlin, Heidelberg.10.1007/978-3-642-31325-7_66 Search in Google Scholar

Torgoev A, Havenith H (2016) 2d dynamic studies combined with the surface curvature analysis to predict arias intensity amplification. Journal of seismology 20(3):711 731.10.1007/s10950-016-9553-0 Search in Google Scholar

Torgoev A, Torgoev I, Alioshin U, Schneider J, Bartolomei A (2006) Usage of gis and remote sensing techniques for landslide hazard prediction. In IAMG 2006−11th International congress for mathematical geology: Quantitative geology from multiple sources page 268 278. Search in Google Scholar

Torgoev I, Alioshin Y, Aitmatov I (2012) Danger and risk of natural and man-caused disasters in the mountains of kyrgyzstan. FOG-Freiberg online geoscience 33:106–129. Search in Google Scholar

Torgoev I, Havenith H, Torgoev A (2014) Geophysical monitoring of artificial landslide dam of Kambarata hydro power plant-2 (Kyrgyzstan. Springer Cham.10.1007/978-3-319-04996-0_98 Search in Google Scholar

Zhakulin A, Zhakulina A, Nephedov V, Tungatarov A, Popov N, Zhakulin A (2020) Investigation of the properties of structurally unstable soils. In 16th Asian regional conference on soil mechanics and geotechnical engineering ARC 2019. PP. Search in Google Scholar

Zhusupbekov A, Bogomolov A (2009) Dynamics of geohazards erosive processes at the prikaspiy region. In Oka F, Murakami A, Kimoto S, eds., Prediction and simulation methods for geohazard mitigation page 615 618. CRC Press London.10.1201/NOE0415804820-92 Search in Google Scholar

Zhusupbekov A, Alibekova N, Abilmazhenov T, Morev I, Feoktistov S, Zhagpar A, Mimura M (2011a) The modern approach to research of geotechnical properties of soils. In 14th Asian regional conference on soil mechanics and geotechnical engineering page 715 721. Search in Google Scholar

Zhusupbekov A, Khomyakov V, Zhagpar A (2011b) Stability of hillsides at construction on sites with high seismicity. In 14th Asian regional conference on soil mechanics and geotechnical engineering page 653 660. Search in Google Scholar

Zhusupbekov A, Lukpanov R, Yenkebayev S, Khomyakov V (2013) Analysis of slope stability and landslide in seismic active regions. In Chu J, Wardani S, Iizuka A, eds., Geotechnical predictions and practice in dealing with geohazards page 281 295. Springer Dordrecht.10.1007/978-94-007-5675-5_18 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo