Otwarty dostęp

Fosfomycin Escherichia coli Resistance in Poultry Meat Associated with the Excessive use of Biocides During COVID-19


Zacytuj

Ansari, S., Hays, J. P., Kemp, A., Murugaiyan, J., Ekwanzala, M. D., Van-Dongen, M. B., 2021: The potential impact of the COVID-19 pandemic on global antimicrobial and biocide resistance: An AMR Insights global perspective. JAC-Antimicrobial Resistance, 3, 2, dlab038. DOI: 10.1093/jacamr/dlab038.Search in Google Scholar

Algeria Press Service, 2020: Fight against Covid19: Pharmaceutical products companies double production. Available at https://www.aps.dz/sante-science-technologie/103288-coronavirus-des-entreprises-doublent-leur-production-en-produits-de-desinfection. Accessed on March 21, 2020.Search in Google Scholar

Baker-Austin, C., Wright, M. S., Stepanauskas, R., Mcarthur, J. V., 2006: Co-selection of antibiotic and metal resistance. Trends Microbiol., 14, 4, 176–182. DOI: 10.1016/j. tim.2006.02.006.Search in Google Scholar

Bouiller, K., Zayet, S., Lalloz, P. E., Potron, A., Gendrin, V., Chirouze, C., 2022: Efficacy and safety of oral fosfomycin-trometamol in male urinary tract infections with multidrug-resistant Enterobacterales. Antibiotics, 11, 2, 198. DOI: 10.3390/antibiotics11020198.Search in Google Scholar

Cyoia, P. S., Koga, V. L., Nishio, E. K., Houle, S., Dozois, C. M., De Brito, K. C. T., 2019: Distribution of ExPEC virulence factors, bla CTX-M, fos A3, and mcr-1 in Escherichia coli isolated from commercialized chicken carcasses. Front. Microb., 9, 3254. DOI: 10.3389/fmicb.2018.03254.Search in Google Scholar

Deng, W., Quan, Y., Yang, S., Guo, L., Zhang, X., Liu, S., 2018: Antibiotic resistance in salmonella from retail foods of animal origin and its association with disinfectant and heavy metal resistance. Microb. Drug Res., 24, 6, 782–791. DOI: 10.1089/mdr.2017.0127.Search in Google Scholar

Dewey, H. M., Jones, J. M., Keating, M. R., Budhathoki-Uprety, J., 2021: Increased use of disinfectants during the COVID-19 pandemic and its potential impacts on health and safety. ACS Chem. Health Saf., 29, 1, 27–38. DOI: 10.1021/acs.chas.1c00026.Search in Google Scholar

Food and Drug Administration (FDA), 2020: BAM Chapter 4; Enumeration of Escherichia coli and the coliform bacteria. Bacteriological Analytical Manual (BAM). Available at https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria. Updated October 10, 2020. Accessed January 01, 2018.Search in Google Scholar

Forbes, S., Dobson, C. B., Humphreys, G. J., McBain, A. J., 2014: Transient and sustained bacterial adaptation following repeated sublethal exposure to microbicides and a novel human antimicrobial peptide. Antimic. Agents Chemother., 58, 10, 5809–5817. DOI: 10.1128/aac.03364-14.Search in Google Scholar

Gadea, R., Fuentes, M. Á. F., Pulido, R. P., Gálvez, A., Ortega, E., 2017: Effects of exposure to quaternary-ammonium-based biocides on antimicrobial susceptibility and tolerance to physical stresses in bacteria from organic foods. Food Microbiol., 63, 58–71. DOI: 0.1016/j.fm.2016.10.037.Search in Google Scholar

Getahun, H., Smith, I., Trivedi, K., Paulin, S., Balkhy, H. H., 2020: Tackling antimicrobial resistance in the COVID-19 pandemic. Bull. WHO, 98, 7, 442. DOI: 10.2471/BLT.20.268573.Search in Google Scholar

Guergueb, N., Alloui, N., Ayachi, A., Aoun, L., Chachoua, I., 2021: Factors associated with bacterial contamination of poultry meat at butcher shops in Biskra, Algeria. Veterinarska Stanica, 52, 4, 429–437. DOI: 10.46419/vs.52.4.3.Search in Google Scholar

Gutema, G., Homa, G., 2022: Cropping up crisis at the nexus between COVID-19 and antimicrobial resistance (AMR) in Africa: A scoping review and synthesis of early evidence. Cureus, 14, 1. DOI: 10.7759/cureus.21035.Search in Google Scholar

Hamadouche, M., Allouche, S., 2020: Assessment of preventive measures application against Covid-19 in the work-place. La Tunisie Medicale, 98, 8, 625–632.Search in Google Scholar

Ho, P. L., Chan, J., Lo, W. U., Law, P. Y., Li, Z., Lai, E. L., 2013: Dissemination of plasmid-mediated fosfomycin resistance fosA3 among multidrug-resistant Escherichia coli from livestock and other animals. J. Appl. Microbiol., 114, 3, 695–702. DOI: 10.1111/jam.12099.Search in Google Scholar

Huang, Y., Lin, Q., Zhou, Q., Wan, L. L. M., Gao, X., Liu, J. H., 2020: Identification of fosA10, a novel plasmid-mediated fosfomycin resistance gene of Klebsiella pneumoniae origin in Escherichia coli. Inf. Drug Resist. 13, 1273. DOI: 10.2147/IDR.S251360.Search in Google Scholar

Ibacache-Quiroga, C., Oliveros, J. C., Couce, A., Blazquez, J., 2018: Parallel evolution of high-level amino-glycoside resistance in Escherichia coli under low and high mutation supply rates. Front. Microbiol., 9, 427. DOI: 10.3389/fmicb.2018.00427.Search in Google Scholar

Kampf, G., 2018: Biocidal agents used for disinfection can enhance antibiotic resistance in gram-negative species. Antibiotics, 7, 4, 110. DOI: 10.3390/antibiotics7040110.Search in Google Scholar

Li, X., Rensing, C., Vestergaard, G., Arumugam, M., Nesme, J., Gupta, S., Sørensen, S. J., 2022: Metagenomic evidence for co-occurrence of antibiotic, biocide and metal resistance genes in pigs. Environ. Int., 158, 106899. DOI: 10.1016/j.envint.2021.106899.Search in Google Scholar

Lounis, M., 2020: COVID-19 in Algeria: Chronology and evaluation of preventive actions. Electronic J. Med. Educ. Technol., 13, 1, em2001. DOI: 10.30935/ejmets/8012.Search in Google Scholar

Lucas, A. E., Ito, R., Mustapha, M. M., McElheny, C. L., Mettus, R. T., 2017: Frequency and mechanisms of spontaneous fosfomycin non susceptibility observed upon disk diffusion testing of Escherichia coli. J. Clin. Microbiol., 56, 1, e01368–17. DOI: 10.1128/jcm.01368-17.Search in Google Scholar

Maillard, J. Y., 2018: Resistance of bacteria to biocides. Microbiol. Spec., 6, 2, 6–2. DOI: 10.1128/microbiolspec.arba-0006-2017.Search in Google Scholar

Manges, A. R., Johnson, J. R., 2012: Food-borne origins of Escherichia coli causing extraintestinal infections. Clin. Inf. Dis., 55, 5, 712–719. DOI: 10.1093/cid/cis502.Search in Google Scholar

Merchel-Piovesan-Pereira, B., Wang, X., Tagkopoulos, I., 2021: Biocide-induced emergence of antibiotic resistance in Escherichia coli. Front. Microbiol., 12, 640923. DOI: 10.3389/fmicb.2021.640923.Search in Google Scholar

Ministry of Agriculture and Rural Development of Algeria, 2018: List of Medicines for Veterinary Use Registered as of 24/10/2018. 57 pp.Search in Google Scholar

Mottet, A., Tempio, G., 2017: Global poultry production: Current state and future outlook and challenges. World’s Poult. Sci. J., 73, 2, 245–256. DOI: 10.1017/S0043933917000071. Search in Google Scholar

Executive Decree No. 20-159 of June 13, 2020: Reorganization of home confinement and the measures taken within the framework of the prevention and control system against the spread of Coronavirus (COVID-19). Official Journal of the Algerian Democratic and Popular Republic. No. 35, 2020, page 18.Search in Google Scholar

O’Neill, J., 2016: Tackling drug-resistant infections globally: Final report and recommendations. Review on Antimicrobial Res. Wellcome Trust, London, UK, 80 pp. Available at https://apo.org.au/sites/default/files/resource-files/2016-05/apo-nid63983.pdf. Search in Google Scholar

Ramadan, H., Soliman, A. M., Hiott, L. M., Elbediwi, M., Woodley, T. A., Jackson, C. R., 2021: Emergence of multi-drug-resistant Escherichia coli producing CTX-M, MCR-1, and FosA in retail food from Egypt. Front. Cell. Inf. Microbiol., 559. DOI: 10.3389/fcimb.2021.681588.Search in Google Scholar

Raz, R., 2012: Fosfomycin: An old-new antibiotic. Clin. Microbiol. Inf., 18, 1, 4–7. DOI: 10.1111/j.1469-0691.2011.03636.x.Search in Google Scholar

Rehman, M. A., Hasted, T. L., Persaud-Lachhman, M. G., Yin, X., Carrillo, C., Diarra, M. S., 2019: Genome analysis and multiplex PCR method for the molecular detection of co-resistance to cephalosporins and fosfomycin in Salmonella enterica serovar Heidelberg. J. Food Prot., 82, 11, 1938–1949. DOI: 10.4315/0362-028X.JFP-19-205.Search in Google Scholar

Rhouma, M., Romero-Barrios, P., Gaucher, M. L., Bhachoo, S., 2021: Antimicrobial resistance associated with the use of antimicrobial processing aids during poultry processing operations: Cause for concern? Crit. Rev. Food Sci. Nutr., 61, 19, 3279–3296. DOI: 10.1080/10408398.2020.1798345.Search in Google Scholar

Rizvi, S. G., Ahammad, S. Z., 2022: COVID-19 and antimicrobial resistance: A cross-study. Sci. Total Envir., 807, 150873. DOI: 10.1016/j.scitotenv.2021.150873.Search in Google Scholar

Rodríguez-Baño, J., Rossolini, G. M., Schultsz, C., Tacconelli, E., Murthy, S., Ohmagari, N., 2021: Antimicrobial resistance research in a post-pandemic world: Insights on antimicrobial resistance research in the COVID-19 pandemic. J. Glob. Antimicrob. Res., 25, 5–7. DOI: 10.1016/j. jgar.2021.02.013.Search in Google Scholar

Russell, A. D., 2002: Biocides and pharmacologically active drugs as residues and in the environment: is there a correlation with antibiotic resistance? Am. J. Inf. Cont., 30, 8, 495–498. DOI: 10.1067/mic.2002.124676.Search in Google Scholar

Seneghini, M., Rüfenacht, S., Babouee-Flury, B., Flury, D., Schlegel, M., Kohler, P. P., 2022: It is complicated: Potential short-and long-term impact of coronavirus disease 2019 (COVID-19) on antimicrobial resistance. An expert review. Antimicrob. Stewardship Healthcare Epidem., 2, 1, e27. DOI: 10.1017/ash.2022.10. Search in Google Scholar

Sharma, P., Gupta, S. K., Adenipekun, E. O., Jarrett, J. B., Hiott, L. M., Woodley, T. A., 2020: Genome analysis of multidrug-resistant Escherichia coli isolated from poultry in Nigeria. Foodborne Path. Dis., 17, 1, 1–7. DOI: 10.1089/fpd.2019.2659.Search in Google Scholar

Slipski, C. J., Zhanel, G. G., Bay, D. C., 2018: Biocide selective TolC-independent efflux pumps in Enterobacteriaceae. J. Membr. Biol., 251, 1, 15–33. DOI: 10.1007/s00232-017-9992-8.Search in Google Scholar

Soliman, A. M., Ramadan, H., Zarad, H., Sugawara, Y., Yu, L., Sugai, M., 2021: Coproduction of Tet (X7) conferring high-level tigecycline resistance, fosfomycin FosA4, and colistin Mcr-1.1 in Escherichia coli strains from chickens in Egypt. Antimicrob. Agents Chemother., 65, 6, e02084–20. DOI: 10.1128/aac.02084-20.Search in Google Scholar

Ten-Doesschate, T., Van-Werkhoven, H., Meijvis, S., Stalenhoef, J., Van-Zuilen, A., De-Vries, A., 2019: Fosfomycin-trometamol for urinary tract infections in kidney transplant recipients. Transplantation, 103, 6, 1272–1276. DOI: 10.1097/TP.0000000000002427.Search in Google Scholar

Thomas, C. T. 4th, Oladeinde, A., Kieran, T. J., Finger, W. F. Jr., Bayona-Vásquez, N. J., et al., 2020: Co-occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah river site. Microb. Biotech., 13, 4, 1179–1200. DOI: 10.1111/1751-7915.13578. Search in Google Scholar

Venter, H., Henningsen, M. L., Begg, S. L., 2017: Antimicrobial resistance in healthcare, agriculture and the environment: the biochemistry behind the headlines. Essays Biochem., 61, 1, 1–10. DOI: 10.1042/EBC20160053. Search in Google Scholar

World Health Organization (WHO), 2020: Cleaning and Disinfection of Environmental Surfaces in the Context of COVID-19. Interim guidance, 15 pp.Search in Google Scholar

Yang, C., M. Rehman, A., Yin, X., Carrillo, C. D., Wang, Q., Yang, C., 2021: Antimicrobial resistance phenotypes and genotypes of Escherichia coli isolates from broiler chickens fed encapsulated cinnamaldehyde and citral. J. Food Prot., 84, 8, 1385–1399. DOI: 10.4315/JFP-21-033.Search in Google Scholar

Yang, X., Liu, W., Liu, Y., Wang, J., Lv, L., Chen, X., 2014: F33: A-: B-, IncHI2/ST3, and IncI1/ST71 plasmids drive the dissemination of fosA3 and blaCTX-M-55/-14/-65 in Escherichia coli from chickens in China. Front. Microbiol., 5, 688. DOI: 10.3389/fmicb.2014.00688.Search in Google Scholar

Zhang, L., Kinkelaar, D., Huang, Y., Li, Y., Li, X., Wang, H. H., 2011: Acquired antibiotic resistance: Are we born with it? Appl. Environ. Microbiol., 77, 20, 7134–7141. DOI: 10.1128/AEM.05087-11.Search in Google Scholar

Zurfluh, K., Treier, A., Schmitt, K., Stephan, R., 2020: Mobile fosfomycin resistance genes in Enterobacteriaceae – an increasing threat. Microbiologyopen, 9, 12, e1135. DOI: 10.1002/mbo3.1135.Search in Google Scholar

eISSN:
2453-7837
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine