Zacytuj

Abdelftah, Z., Gaber, A. R., Abo-Eleneen, R. E., EL-Bakry, A. M., 2021: Microstructure characteristics of cornea of some birds: A comparative study. Beni-Suef Univ. J. Basic. Appl. Sci., 10, 1, 66. Available at https://bjbas.springeropen.com/articles/10.1186/s43088-021-00155-2.Search in Google Scholar

Agrawal, R. N, He, S., Spee, C., Cui, J. Z., Ryan, S. J., Hinton, D. R., 2007: In vivo models of proliferative vitreoretinopathy. Nat. Protoc., 2, 1, 67–77. Available at http://www.nature.com/articles/nprot.2007.4.Search in Google Scholar

Albuquerque, L., Pigatto, J. A. T., Freitas, L. V. da RP., 2015: Analysis of the corneal endothelium in eyes of chickens using contact specular microscopy. Semin Ciências Agrárias, 36, 6, Supl. 2, 4199. Available at http://www.uel.br/revistas/uel/index.php/semagrarias/article/view/19497.Search in Google Scholar

Bamidele, A. O., Akinpelu, A. I., 2020: Comparison of cranial and body morphology of tree squirrels (Helioscurius rufobranchium) in selected locations of rainforest in Nigeria. Zool., 17, 47–53. Available at https://www.ajol.info/index.php/tzool/article/view/193735.Search in Google Scholar

Bancroft, J. D., Layton, C., 2013: The hematoxylins and eosin. In Suvarna, S. K., Layton, C., Bancroft, J. D.: Bancroft’s Theory and Practice of Histological Techniques. 7th edn., Churchill Livingstone, UK, 173–86. Available at https://linkinghub.elsevier.com/retrieve/pii/B978070204226300010X.Search in Google Scholar

Beuerman, R. W., Pedroza, L., 1996: Ultrastructure of the human cornea. Microsc. Res. Tech., 33, 4, 320–335. DOI: 10.1002/(SICI)1097-0029(19960301)33:4%3C320::AID-JEMT3%3E3.0.CO;2-T.Search in Google Scholar

Brunette, I., Rosolen, S. G., Carrier, M., Abderrahman, M., Nada, O., Germain, L., et al., 2011: Comparison of the pig and feline models for full thickness corneal transplantation. Vet. Ophthalmol., 14, 6, 365–377. DOI: 10.1111/j.1463-5224.2011.00886.x.Search in Google Scholar

Butt, A. M., Colquhoun, K., Tutton, M., Berry, M., 1994: Three-dimensional morphology of astrocytes and oligodendrocytes in the intact mouse optic nerve. J. Neurocytol., 23, 8, 469–485. Available at http://link.springer.com/10.1007/BF01184071.Search in Google Scholar

Butt, A. M., Ransom, B. R., 1989: Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase. Glia, 2, 6, 470–475. DOI: 10.1002/glia.440020609.Search in Google Scholar

Butt, A. M., Ransom, B. R., 1993: Morphology of astrocytes and oligodendrocytes during development in the intact rat optic nerve. J. Comp. Neurol., 338, 1, 141–158. DOI: 10.1002/cne.903380110.Search in Google Scholar

Buttery, R. G., Hinrichsen, C. F. L., Weller, W. L., Haight, J. R., 1991: How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vision Res, 31, 2, 169–187. Available at https://linkinghub.elsevier.com/retrieve/pii/004269899190110Q.Search in Google Scholar

Campi, K. L., Krubitzer, L., 2010: Comparative studies of diurnal and nocturnal rodents: Differences in lifestyle result in alterations in cortical field size and number. J. Comp. Neurol., 518, 22, 4491–4512. DOI: 10.1002/cne.22466.Search in Google Scholar

Case, L. C., Tessier-Lavigne, M., 2005: Regeneration of the adult central nervous system. Curr. Biol., 15, 18, R749–753. Available at https://linkinghub.elsevier.com/retrieve/pii/S0960982205010304.Search in Google Scholar

Cech, S., 2004: An attempt to describe the ultrastructure and ultrahistochemistry of ciliary processes in mammals. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 148, 2, 201–202. DOI: 10.5507/bp.2004.038.html.Search in Google Scholar

Cernuda-Cernuda, R., García-Fernández, J. M., Gordijn, M. C. M., Bovee-Geurts, P. H. M., DeGrip, W. J., 2003: The eye of the African mole-rat Cryptomys anselli: To see or not to see? Eur. J. Neurosci., 17, 4, 709–720. DOI: 10.1046/j.1460-9568.2003.02485.x.Search in Google Scholar

Chakravarthy, A. K., Thyagaraj, N. E., 2012: The palm squirrel in coconut plantations: ecosystem services by therophily. Mammalia, 76, 2. DOI: 10.1515/mamma-lia-2011-0073/html.Search in Google Scholar

Chakravarti, S., 2001: The cornea through the eyes of knockout mice. Exp. Eye Res., 73, 4, 411–9. Available at https://linkinghub.elsevier.com/retrieve/pii/S0014483501910553.Search in Google Scholar

Cholkar, K., Dasari., S. R., Pal, D., Mitra, A. K., 2013: Eye: Anatomy, physiology and barriers to drug delivery. In Ocular Transporters and Receptors. 1–36. Available at https://link-inghub.elsevier.com/retrieve/pii/B9781907568862500010Search in Google Scholar

Coker, O. M., Jubril, A. J., Isong, O. M., Omonona, A. O., 2020: Internal and external morphometry of Thomas’s rope squirrel (Funisciurus anerythrus) and Gambian sun squirrel (Heliosciurus gambianus) in Ibadan, Nigeria. Anim. Res. Int., 17, 2, 3747–3760. Available at https://www.ajol.info/index.php/ari/article/view/199339.Search in Google Scholar

Coker, O. M., Osaiyuwu, O. H., Isong, O. M., 2020: Genetic variations in Thomas’s Rope squirrel (Funisciurus anerythrus) and Gambian Sun squirrel (Heliosciurus gambianus) Ibadan, Nigeria, using allozyme markers. Genet. Biodivers. J., 5, 1, 4–11. Available at https://journals.univ-tlemcen.dz/GABJ/index.php/GABJ/article/view/158.Search in Google Scholar

Collin, S. P., Collin, H. B., 1998: A comparative study of the corneal endothelium in vertebrates. Clin. Exp. Optom., 81, 6, 245–254. DOI: 10.1111/j.1444-0938.1998.tb06744.x.Search in Google Scholar

Davis, F. A., 1929: The anatomy and histology of the eye and orbit of the rabbit. Trans. Am. Ophthalmol. Soc., 27, 400.2–441. Available at http://www.ncbi.nlm.nih.gov/pubmed/16692841.Search in Google Scholar

Davis, K., Carter, R., Tully, T., Negulescu, I., Storey, E., 2015: Comparative evaluation of aqueous humour viscosity. Vet. Ophthalmol., 18, 1, 50–8. DOI: 10.1111/vop.12145.Search in Google Scholar

Dogiel, A. S. 1895: Die Retina der Vögel. Arch. für Mikroskopische Anat., 44, 1, 622–648. Available at http://link.springer.com/10.1007/BF02934032.Search in Google Scholar

Doi, M., Imatani, H., Sasoh, M., Uji, Y., Yamamura, H., 1994: Displaced retinal ganglion cells in the Chinese hamster. Jpn. J. Ophthalmol., 38, 2, 139–143. Available at http://www.ncbi.nlm.nih.gov/pubmed/7967204.Search in Google Scholar

Dräger, U. C., Olsen, J. F., 1980: Origins of crossed and uncrossed retinal projections in pigmented and albino mice. J. Comp. Neurol., 191, 3, 383–412. DOI: 10.1002/cne.901910306.Search in Google Scholar

Duke-Elder, S., 1958: The eye in evolution. In System of Ophthalmology, 19 Volume Set. London, Henry Kimpton, 14392 pp. Search in Google Scholar

Duncan, R. D., Jenkins, S. H., 1998: Use of visual cues in foraging by a diurnal herbivore, Belding’s ground squirrel. Can. J. Zool., 76, 9, 1766–1770. DOI: 10.1139/z98-119.Search in Google Scholar

Fatt, I., Weissman, B. A., 2013: Physiology of the Eye: An Introduction to the Vegetative Functions. Elsevier Science, 517 pp. Available at https://www.everand.com/book/282595670/Physiology-of-the-Eye-An-Introduction-to-the-Vegetative-Functions.Search in Google Scholar

Fitch, H. S., 1948: Ecology of the California ground squirrel on grazing lands. Am. Midl. Nat., 39, 3, 513. Available at https://www.jstor.org/stable/2421524?origin=crossref.Search in Google Scholar

Fitzgibbon, C. D., Mogaka, H., Fanshawe, J. H., 1995: Subsistence hunting in Arabuko-Sokoke forest, Kenya, and its effects on mammal populations. Conserv. Biol., 9, 5, 1116–1126. DOI: 10.1046/j.1523-1739.1995.9051085.x-i1.Search in Google Scholar

Gabriel, L. A. R., Wang, L. W., Bader, H., Ho, J. C., Majors, A. K., Hollyfield, J. G., et al., 2012: ADAMTSL4, a secreted glycoprotein widely distributed in the eye, binds fibrillin-1 microfibrils and accelerates microfibril biogenesis. Invest. Ophthalmol. Vis. Sci., 53, 1, 461–469. Available at http://www.ncbi.nlm.nih.gov/pubmed/21989719.Search in Google Scholar

Galindo-Romero, C., Avilés-Trigueros, M., Jiménez-López, M., Valiente-Soriano, F. J., Salinas-Navarro, M., Nadal-Nicolás, F., et al., 2011: Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses. Exp. Eye Res., 92, 5, 377–387. Available at https://linkinghub.elsevier.com/retrieve/pii/S001448351100042X.Search in Google Scholar

Guttenplan, K. A., Stafford, B. K., El-Danaf, R. N., Adler, D. I., Münch, A. E., Weigel, M. K., et al., 2020: Neurotoxic reactive astrocytes drive neuronal death after retinal injury. Cell. Rep., 31, 12, 107776. Available at https://linkinghub.elsevier.com/retrieve/pii/S2211124720307567.Search in Google Scholar

Hall, M. I., 2008: Comparative analysis of the size and shape of the lizard eye. Zoology (Jena), 111, 1, 62–75. Available at https://linkinghub.elsevier.com/retrieve/pii/S0944200607000785.Search in Google Scholar

Hayashi, S., Osawa, T., Tohyama, K., 2002: Comparative observations on corneas, with special reference to Bowman’s layer and Descemet’s membrane in mammals and amphibians. J. Morphol., 254, 3, 247–258. DOI: /10.1002/jmor.10030.Search in Google Scholar

Howell, G. R., Libby, R. T., Jakobs, T. C., Smith, R. S., Phalan, F. C., Barter, J. W., et al., 2007: Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J. Cell. Biol., 179, 7, 1523–1537. Available at http://www.ncbi.nlm.nih.gov/pubmed/18158332.Search in Google Scholar

Ikpegbu, E., Nlebedum, U., Ibe, C., 2014: The kidney and adrenal gland of the African palm squirrel Epixerus ebii: A microanatomical observation. Rev. Fac. Ciencias. Vet., 55, 2, 60–67. Available at https://www.redalyc.org/pdf/3731/373139085001.pdf.Search in Google Scholar

Ikyaagba, E. T., Alarape, A. A., Omifolaji, J. K., Uloko, I. J., Jimoh, O. S., 2020: Mammal richness and diversity in tropical ecosystem: The role of protected area in conserving vertebrate fauna, Oban Hill’s region. J. Agric. Sustain., 13, 1–20. Available at https://infinitypress.info/index.php/jas/article/view/1975.Search in Google Scholar

Jackson, P., Blythe, D., 2013: Immunohistochemical techniques. In Suvarna, S. K., Layton, C., Bancroft, J. D.: Bancroft’s Theory and Practice of Histological Techniques. 7th edn., Elsevier, 381–426. Available at https://linkinghub.elsevier.com/retrieve/pii/B9780702042263000184.Search in Google Scholar

Jacobs, G. H., Tootell, R. B. H., Fisher, S. K., Anderson, D. H., 1980: Rod photoreceptors and scotopic vision in ground squirrels. J. Comp. Neurol., 189, 1, 113–125. DOI: 10.1002/cne.901890107.Search in Google Scholar

Jakus, M. A., 1954: Studies on the cornea. I. The fine structure of the rat cornea. Am. J. Ophthalmol., 38, 1, 2, 40–53. Available at http://www.ncbi.nlm.nih.gov/pubmed/13180617.Search in Google Scholar

Jeffery, G., Evans, A., Albon, J., Duance, V., Neal, J., Dawidek, G., 1995: The human optic nerve: Fascicular organisation and connective tissue types along the extra-fascicular matrix. Anat. Embryol. (Berl)., 191, 6, 491–502. Available at http://link.springer.com/10.1007/BF00186739.Search in Google Scholar

Johnson, P. T., Geller, S. F., Reese, B. E., 1998: Distribution, size and number of axons in the optic pathway of ground squirrels. Exp. Brain Res., 118, 1, 93–104. Available at http://link.springer.com/10.1007/s002210050258.Search in Google Scholar

Kingdon, J., 1997: The Kingdon Field Guide to African Mammals. Academic Press, San Diego, California. Available at http://www.rhinoresourcecenter.com/pdf_files/130/1303945154.pdf.Search in Google Scholar

Koskela, T. K., Reiss, G. R., Brubaker, R. F., Ellefson, R. D., 1989: Is the high concentration of ascorbic acid in the eye an adaptation to intense solar irradiation? Invest. Ophthalm. Vis. Sci., 30, 10, 2265–2267. Available at http://www.ncbi.nlm.nih.gov/pubmed/2793364.Search in Google Scholar

Kronfeld-Schor, N., Dayan, T., Jones, M. E., Kremer, I., Mandelik, Y., Wollberg, M., et al., 2001: Retinal structure and foraging microhabitat use of the golden spiny mouse (Acomys russatus). J. Mammal., 82, 4, 1016–1025. Available at https://academic.oup.com/jmammal/article/82/4/1016-1025/2372725.Search in Google Scholar

Kryger, Z., Galli-Resta, L., Jacobs, G. H., Reese, B. E., 1998: The topography of rod and cone photoreceptors in the retina of the ground squirrel. Vis. Neurosci., 15, 4, 685–691. Available at https://www.cambridge.org/core/product/identifier/S0952523898154081/type/journal_article.Search in Google Scholar

Layton, C., Bancroft, J. D., 2013: Carbohydrates. In: Suvarna, S. K., Layton, C., Bancroft, J. D.: Bancroft’s Theory and Practice of Histological Techniques (Internet). 7th edn., Churchill Livingstone, UK, 215–238. Available at https://link-inghub.elsevier.com/retrieve/pii/B9780702042263000123.Search in Google Scholar

Lluch, S., Ventura, J., López-Fuster, M. J., 2008: Eye morphology in some wild rodents. Anat. Histol. Embryol., 37, 1, 41–51. DOI: 10.1111/j.1439-0264.2007.00796.x.Search in Google Scholar

Long, K. O., Fisher, S. K., 1983: The distributions of photo-receptors and ganglion cells in the California ground squirrel, Spermophilus beecheyi. J. Comp. Neurol., 221, 3, 329–340. DOI: 10.1002/cne.902210308.Search in Google Scholar

Lurz, P., 2011: Squirrels and relatives II: Ground squirrels. In Grzimek’s Animal Life Encyclopedia: Mammals, 16, 143–161. Available at https://brookslibraryvt.org/wp-content/uploads/2021/02/Squirrels_and_Relatives_II_Gro.pdf.Search in Google Scholar

Malinin, G. I., Bernstein, H., 1979: Histochemical demonstration of glycogen in corneal endothelium. Exp. Eye Res., 28, 4, 381–385. Available at https://linkinghub.elsevier.com/retrieve/pii/0014483579901131.Search in Google Scholar

McFarland, W. N., 1991: The visual world of coral reef fishes. In The Ecology of Fishes on Coral Reefs. Academic Press, San Diego, California, 16–38. Available at https://www.vliz.be/en/imis?module=ref&refid=9173.Search in Google Scholar

Mescher, A. L., 2016: Junqueira’s Basic Histology: A Color Atlas and Text. 14th edn., Basic histology: A colour atlas and text. McGraw-Hill Education, 573 pp. Available at https://www.academia.edu/37006818/Junqueiras_Basic_Histology_Text_and_Atlas_14th_Edition.Search in Google Scholar

Misantone, L. J., Gershenbaum, M., Murray, M., 1984: Viability of retinal ganglion cells after optic nerve crush in adult rats. J. Neurocytol., 13, 3, 449–465. Available at http://link.springer.com/10.1007/BF01148334.Search in Google Scholar

Morgan, W. H., Yu, D. Y., Alder, V. A., Cringle, S. J., Cooper, R. L., House, P. H., et al., 1998: The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest, Ophthalmol. Vis. Sci., 39, 8, 1419–1428. Available at http://www.ncbi.nlm.nih.gov/pubmed/9660490.Search in Google Scholar

Müller, L. J., Pels, L., Vrensen, G. F., 1995: Novel aspects of the ultrastructural organization of human corneal keratocytes. Invest. Ophthalmol. Vis. Sci., 36, 13, 2557–2567. Available at http://www.ncbi.nlm.nih.gov/pubmed/7499078.Search in Google Scholar

Nadal-Nicolás, F. M., Jiménez-López, M., Salinas-Navarro, M., Sobrado-Calvo, P., Vidal-Sanz, M., Agudo-Barriuso, M., 2017: Microglial dynamics after axotomy-induced retinal ganglion cell death. J. Neuroinflam., 14, 1, 218. Available at https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-017-0982-7.Search in Google Scholar

Nadal-Nicolás, F. M., Jiménez-López, M., Sobrado-Calvo, P., Nieto-López, L., Cánovas-Martínez, I., Salinas-Navarro, M., et al., 2009: Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest. Ophthalmol. Vis. Sci., 50, 8, 3860–3868. Available at http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.08-3267.Search in Google Scholar

Nadal-Nicolas, F. M., Salinas-Navarro, M., Jiménez-López, M., Sobrado-Calvo, P., Villegas-Pérez, M. P., Vidal-Sanz, M., et al., 2014: Displaced retinal ganglion cells in albino and pigmented rats. Front. Neuroanat., 8, 99. Available at http://www.ncbi.nlm.nih.gov/pubmed/25339868.Search in Google Scholar

Nadal-Nicolás, F. M., Sobrado-Calvo, P., Jiménez-López, M., Vidal-Sanz, M., Agudo-Barriuso, M., 2015: Long-term effect of optic nerve axotomy on the retinal ganglion cell layer. Invest. Ophthalmol. Vis. Sci., 56, 10, 6095–6112. Available at http://iovs.arvojournals.org/article.aspx?doi=10.1167/iovs.15-17195.Search in Google Scholar

Nadal-Nicolás, F., Miyagishima, K., Li, W., 2022: In search for the “idyllic” animal model to evaluate ocular pathologies and translate new therapies to improve human health. Neural Regen. Res., 17, 12, 2697. Available at http://www.ncbi.nlm.nih.gov/pubmed/35662215.Search in Google Scholar

Nautscher, N., Bauer, A., Steffl, M., Amselgruber, W. M., 2016: Comparative morphological evaluation of domestic animal cornea. Vet. Ophthalmol., 19, 4, 297–304. DOI: 10.1111/vop.12298.Search in Google Scholar

Omifolaji, J. K., Teresa, I. E., Alarape, A. A., Ojo, V. A., Modu, M., Lateef, L. F., et al., 2020: Estimates of Demidoff’s galago (Galagoides demidovii) density and abundance in a changing landscape in the Oban hills, Nigeria. Hystrix, Ital. J. Mammal., 2, 31, 117–122. Available at http://www.italian-journal-of-mammalogy.it/Estimates-of-Demidoff-sgalago-Galagoides-demidovii-density-and-abundance-in-a-changing,128298,0,2.html#.Search in Google Scholar

Omonona, A., Ademola, I., Odeniran, P., Jubril, A., Asenowo, O., Olagbenro, O., 2020: Parasitic burden of African squirrels captured in a Nigerian University community. Niger. J. Parasitol., 41, 2. Available at https://www.ajol.info/index.php/njpar/article/view/200107.Search in Google Scholar

Parrilla-Reverter, G., Agudo, M., Nadal-Nicolás, F., Alarcón-Martínez, L., Jiménez-López, M., Salinas-Navarro, M., et al., 2009: Time-course of the retinal nerve fibre layer degeneration after complete intra-orbital optic nerve transection or crush: A comparative study. Vision Res., 49, 23, 2808–2825. Available at https://linkinghub.elsevier.com/retrieve/pii/S0042698909003794.Search in Google Scholar

Peter-Ajuzie, I. K., Nwaogu, I. C., Majesty-Alukagberie, L. O., Ajaebili, A. C., Farrag, F. A., Kassab, M. A., Abumandour, M., 2022: Ocular morphology of the fruit bat, Eidolon helvum, and the optical role of the choroidal papillae in the megachiropteran eye: A novel insight. Folia Morphologica, 81, 3, 715–722. DOI: 10.5603/FM.a2021.0072.Search in Google Scholar

Peter-Ajuzie, I. K., Nwaogu, I. C., Igwebuike, U. M., 2019: Anatomical assessment of the eye of the African grass-cutter (Thryonomys swinderianus). J. Appl. Life Sci. Int., 1–8. Available at https://journaljalsi.com/index.php/JALSI/article/view/365.Search in Google Scholar

Ramón y Cajal, S., 1972: The Structure of the Retina. Thorpe, S., Glickstein, M., translators. Thomas, Springfield, Illinois, 196 pp. Search in Google Scholar

Rodriguez-Ramos, Fernandez J., Dubielzig, R. R., 2013: Ocular comparative anatomy of the family Rodentia. Vet. Ophthalmol., 16 Suppl. 1, 94–99. Available at http://www.ncbi.nlm.nih.gov/pubmed/23734597.Search in Google Scholar

Rosevear, D. R., 1969: The Rodents of West Africa. London: British Museum (Natural History), 604 pp. Available at https://books.google.com.ng/books/about/The_Rodents_of_West_Africa.html?id=wUEgSgAACAAJ&redir_esc=y. Search in Google Scholar

Ruiz-Ederra, J., García, M., Hernández, M., Urcola, H., Hernández-Barbáchano, E., Araiz, J., et al., 2005: The pig eye as a novel model of glaucoma. Exp. Eye Res., 81, 5, 561–569. Available at http://www.ncbi.nlm.nih.gov/pubmed/15949799.Search in Google Scholar

Saadi-Brenkia, O., Hanniche, N., Lounis, S., 2018: Microscopic anatomy of ocular globe in diurnal desert rodent Psammomys obesus (Cretzschmar, 1828). J. Basic Appl. Zool., 79, 1, 43. Available at https://basicandappliedzoology.springeropen.com/articles/10.1186/s41936-018-0056-0.Search in Google Scholar

Sánchez-Migallón, M. C., Valiente-Soriano, F. J., Nadal-Nicolás, F. M., Vidal-Sanz, M., Agudo-Barriuso, M., 2016: Apoptotic retinal ganglion cell death after optic nerve transection or crush in mice: Delayed RGC loss with BDNF or a caspase 3 inhibitor. Invest. Ophthalmol. Vis. Sci., 57, 1, 81–93. Available at http://iovs.arvojournals.org/article.aspx-?doi=10.1167/iovs.15-17841.Search in Google Scholar

Scott, J. E., Bosworth, T.R., 1990: A comparative biochemical and ultrastructural study of proteoglycan-collagen interactions in corneal stroma. Functional and metabolic implications. Biochem. J., 270, 2, 491–497. Available at https://port-landpress.com/biochemj/article/270/2/491/26625/A-comparative-biochemical-and-ultrastructural.Search in Google Scholar

Seebeck, J. H., 1989: Scuiridae. In Walton, D., Richardson, B.: Mammalia, Fauna of Australia Series. Canberra, Australia: Australian Government Publishing Service; 1–13. Available at https://web.archive.org/web/20150117031835/ http://www.scarysquirrel.org/vacation/australia/fauna.pdf.Search in Google Scholar

Shorten, M., 1954: Squirrels. Collins, London, 212 pp. Search in Google Scholar

Sondereker, K. B., Stabio, M. E., Jamil, J. R., Tarchick, M. J., Renna, J. M., 2018: Where you cut matters: A dissection and analysis guide for the spatial orientation of the mouse retina from ocular landmarks. J. Vis. Exp., 138. Available at https://www.jove.com/t/57861/where-you-cut-matters-dissection-analysis-guide-for-spatial.Search in Google Scholar

Sun, D., Lye-Barthel, M., Masland, R. H., Jakobs, T. C., 2009: The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. J. Comp. Neurol., 516, 1, 1–19. DOI: 10.1002/cne.22058.Search in Google Scholar

Szél, A., Röhlich, P., 1988: Four photoreceptor types in the ground squirrel retina as evidenced by immunocytochemistry. Vision Res., 28, 12, 1297–1302. Available at https://link-inghub.elsevier.com/retrieve/pii/0042698988900600.Search in Google Scholar

Thorington, R. W., Thorington, J. R. W., Ferrell, K. E., 2007: Squirrels: The animal answer guide. J. Mammal., 88, 3, 824–824. DOI: 10.1644/06-MAMM-R-397R.1.Search in Google Scholar

Vajzovic, L., Hendrickson, A. E., O’Connell, R. V., Clark, L. A., Tran-Viet, D., Possin, D., et al., 2012: Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology. Am. J. Ophthalmol., 154, 5, 779–789.e2. Available at http://www.ncbi.nlm.nih.gov/pubmed/22898189.Search in Google Scholar

Van Hooser, S. D., Nelson, S. B., 2006: The squirrel as a rodent model of the human visual system. Vis. Neurosci., 23, 5, 765–778. Available at https://www.cambridge.org/core/product/identifier/S0952523806230098/type/journal_articleSearch in Google Scholar

Villegas-Pérez, M. P., Vidal-Sanz, M., Rasminsky, M., Bray, G. M., Aguayo, A. J., 1993: Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. J. Neurobiol., 24, 1, 23–36. DOI: 10.1002/neu.480240103.Search in Google Scholar

Walls, G. L., 1963: The Vertebrate Eye and its Adaptative Radiation. Hafner Publishing Co., New York, London, 785 pp. Available at https://ia802605.us.archive.org/35/items/vertebrateeyeits00wall/vertebrateeyeits00wall.pdf.Search in Google Scholar

Wasilewa, P., Hockwin, O., Korte, I., 1976: Glycogen concentration changes in retina, vitreous body and other eye tissues caused by disturbances of blood circulation. Albrecht Von Graefes Arch. Klin. Exp. Ophthalmol, 199, 2, 115–120. Available at http://www.ncbi.nlm.nih.gov/pubmed/1083690.Search in Google Scholar

West, R. W., Dowling, J. E., 1975: Anatomical evidence for cone and rod-like receptors in the gray squirrel, ground squirrel, and prairie dog retinas. J. Comp. Neurol., 159, 4, 439–460. DOI: 10.1002/cne.901590402.Search in Google Scholar

Woolf, D., 1956: A comparative cytological study of the ciliary muscle. Anat. Rec., 124, 2, 145–163. Available at http://www.ncbi.nlm.nih.gov/pubmed/13302815.Search in Google Scholar

Xiao, X., Zhao, T., Miyagishima, K. J., Chen, S., Li, W., Nadal-Nicolás, F. M., 2021: Establishing the ground squirrel as a superb model for retinal ganglion cell disorders and optic neuropathies. Lab. Invest., 101, 9, 1289–1303. Available at https://www.nature.com/articles/s41374-021-00637-y.Search in Google Scholar

eISSN:
2453-7837
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine