Otwarty dostęp

Phytobiotics and Their Antibacterial Activity Against Major Fish Pathogens. A Review


Zacytuj

1. Abushaheen, M. A., Muzaheed, Fatani, A. J., Alosaimi, M. Mansy, W., George, M., et al., 2020: Antimicrobial resistance, mechanisms and its clinical significance. Dis. Mon., 66, 6, 100971. DOI: 10.1016/j.disamonth.2020.100971. Open DOISearch in Google Scholar

2. Akmal, M., Rahimi-Midani, A., Hafeez-Ur-Rehman, M., Hussain, A., Choi, Tae-Jin, 2020: Isolation, characterization, and application of a bacteriophage infecting the fish pathogen Aeromonas hydrophila. Pathogens, 9, 3, 215. DOI: 10.3390/pathogens9030215. Open DOISearch in Google Scholar

3. Alagawany, M., Farag, M. R., Abdelnour, S. A., Elnesr, S. S., 2021: A review on the beneficial effect of thymol on health and production of fish. Rev. Aquacult., 13, 1, 632–641. DOI: 10.1111/raq.12490. Open DOISearch in Google Scholar

4. Alizadeh Behbahani, B., Falah, F., Lavi Arab, F., Vasiee, M., Tabatabaee Yazdi, F., 2020: Chemical composition and antioxidant, antimicrobial, and antiproliferative activities of Cinnamomum zeylanicum bark essential oil. Evid.-based Complement. Altern. Med., 2020. DOI: 10.1155/2020/5190 603. Open DOISearch in Google Scholar

5. Austin, B., Austin, D. A., 2016: Aeromonadaceae representative (Aeromonas salmonicida). In Bacterial Fish Pathogens. 6th edn., Springer, Cham, 215–321. Search in Google Scholar

6. Vincent, A. T., Gauthier, J., Derome, N., Charette, S. J., 2019: The rise and fall of antibiotics in aquaculture. In Microbial Communities in Aquaculture Ecosystems. Springer, Cham, 3–8. Search in Google Scholar

7. Barbier, P., Rochat, T., Mohammed, H. H., Wiens, G. D., Bernardet, J. F., Halpern, D., et al., 2020: The type IX secretion system is required for virulence of the fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol., 86, 16, e00799–20. DOI: 10.1128/AEM.00799-20. Open DOISearch in Google Scholar

8. Barnes, M. E., Brown, M. L., 2011: A review of Flavobacterium psychrophilum biology, clinical signs, and bacterial cold water disease prevention and treatment. Open Fish Sci. J., 4, 1–9. DOI: 10.2174/1874401x01104010040. Open DOISearch in Google Scholar

9. Bhambhani, S., Kondhare, K. R., Giri, A. P., 2021: Diversity in chemical structures and biological properties of plant alkaloids. Molecules, 26, 11, 3374. DOI: 10.3390/molecu les26113374. Open DOISearch in Google Scholar

10. Boyacioglu, M., Akar, F., 2012: Isolation of Flavobacterium psychrophilum causing rainbow trout fry syndrome and determination of an effective antibacterial treatment in rainbow trout (Oncorhynchus mykiss) fry. Kafkas Univ. Vet. Fak., 18, 197–203. DOI: 10.9775/kvfd.2011.5254. Open DOISearch in Google Scholar

11. Reygaert, W. C., 2018: An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 4, 3, 482–501. DOI: 10.3934/microbiol.2018.3.482. Open DOISearch in Google Scholar

12. Caputo, A., BondadReantaso, M. G., Karunasagar, I., Hao, B., Gaunt, P., VernerJeffreys, D., et al., 2022: Antimicrobial resistance in aquaculture: A global analysis of literature and national action plans. Rev. Aquac., 1–11. DOI: 10.1111/raq.12741. Open DOISearch in Google Scholar

13. Casciaro, B., Mangiardi, L., Cappiello, F., Romeo, I., Loffredo, M. R., Iazzetti, A., et al., 2020: Naturally-occurring alkaloids of plant origin as potential antimicrobials against antibiotic-resistant infections. Molecules, 25, 16, 3619. DOI: 10.3390/molecules25163619. Open DOISearch in Google Scholar

14. Chopra, A. K., Xu, X. J., Ribardo, D., Gonzalez, M., Kuhl, K., Peterson, J. W., et al., 2000: The cytotoxic enterotoxin of Aeromonas hydrophila induces proinflammatory cytokine production and activates arachidonic acid metabolism in macrophages. Infect. Immun., 68, 5, 2808–2818. DOI: 10.1128/iai.68.5.2808-2818.2000. Open DOISearch in Google Scholar

15. Cox-Georgian, D., Ramadoss, N., Dona, C., Basu, C., 2019: Therapeutic and medicinal uses of terpenes. In Medicinal Plants: From Farm to Pharmacy. Springer, 333–359. DOI: 10.1007/978-3-030-31269-5_15. Open DOISearch in Google Scholar

16. Christaki, E., Marcou, M., Tofarides, A., 2020: Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J. Mol. Evol., 88, 1, 26–40. DOI: 10.1007/s00239-019-09914-3. Open DOISearch in Google Scholar

17. Citterio, B., Biavasco, F., 2015: Aeromonas hydrophila virulence. Virulence, 6, 5, 417–418. DOI: 10.1080/21505594.2015.1058479. Open DOISearch in Google Scholar

18. Dallaire-Dufresne, S., Tanaka, K. H., Trudel, M. V., Lafaille, A., Charette, S. J., 2014: Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet. Microbiol., 169, 1–2, 1–7. DOI: 10.1016/j.vetmic.2013.06.025. Open DOISearch in Google Scholar

19. Das, A. K., Islam, M. N., Faruk, M. O., Ashaduzzaman, M., Dungani, R., 2020: Review on tannins: Extraction processes, applications and possibilities. S. Afr. J. Bot., 135, 58–70. DOI: 10.1016/j.sajb.2020.08.008. Open DOISearch in Google Scholar

20. Dawood, M. A., El Basuini, M. F., Zaineldin, A. I., Yilmaz, S., Hasan, M. T., Ahmadifar, E., 2021: Antiparasitic and antibacterial functionality of essential oils: An alternative approach for sustainable aquaculture. Pathogens, 10, 2, 185. DOI: 10.3390/pathogens10020185. Open DOISearch in Google Scholar

21. de Rezende, R. A. E., Soares, M. P., Sampaio, F. G., Cardoso, I. L., Ishikawa, M. M., Dallago, B. S. L., et al., 2021: Phytobiotics blend as a dietary supplement for Nile tilapia health improvement. Fish Shellfish Immunol., 114, 293–300. Search in Google Scholar

22. Dorojan, O. G. V., Cristea, V., Creţu, M., Dediu, L., Docan, A. I., Coadă, M. T., 2015: The effect of thyme (Thymus vulgaris) and vitamin E on the Acipenser stellatus juvenile welfare, reared in a recirculating aquaculture. AACL Bio-flux, 8, 2, 150–158. Search in Google Scholar

23. Duchaud, E., Boussaha, M., Loux, V., Bernardet, J. F., Michel, C., Kerouault, B., et al., 2007: Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nature Biotechnol., 25, 7, 763–769. DOI: 10.1038/nbt1313. Open DOISearch in Google Scholar

24. Fazelan, Z., Vatnikov, Y. A., Kulikov, E. V., Plushikov, V. G., Yousefi, M., 2020: Effects of dietary ginger (Zingiber officinale) administration on growth performance and stress, immunological, and antioxidant responses of common carp (Cyprinus carpio) reared under high stocking density. Aquaculture, 518, 734833. DOI: 10.1016/j.aquaculture.2019.734833. Open DOISearch in Google Scholar

25. Food and Agriculture Organization of the United Nations: Global Fish Processed Products Production Statistics Quantity (1976–2020). Updated July 17, 2022. Accessed July 17, 2022. https://www.fao.org/fishery/statistics-query/en/trade_pp/trade_pp_quantity. Search in Google Scholar

26. Founou, R. C., Founou, L. L., Essack, S. Y., 2017: Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLOS ONE, 12, 12, e0189621. DOI: 10.1371/journal.pone.0189621. Open DOISearch in Google Scholar

27. Frans, I., Michiels, C. W., Bossier, P., Willems, K. A., Lievens, B., Rediers, H., 2011: Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. J. Fish Dis., 34, 9, 643–661. DOI: 10.1111/j.1365-2761.2011.01279.x. Open DOISearch in Google Scholar

28. Hayatgheib, N., Fournel, C., Calvez, S., Pouliquen, H., Moreau, E., 2020: In vitro antimicrobial effect of various commercial essential oils and their chemical constituents on Aeromonas salmonicida subsp. salmonicida. J. Appl. Micro-biol., 129, 1, 137–145. DOI: doi:10.1111/jam.14622. Open DOISearch in Google Scholar

29. Hays, L.: The Current State of Antibiotics in Aquaculture. Updated May 4, 2020. Accessed May 4, 2020. https://www.qb-labs.com/blog/2020/5/4/the-current-state-of-antibiotics-in-aquaculture. Search in Google Scholar

30. Hickey, M. E., Lee, J. L., 2018: A comprehensive review of Vibrio (Listonella) anguillarum: Ecology, pathology and prevention. Rev. Aquac., 10, 3, 585–610. DOI: 10.1111/raq.12188. Open DOISearch in Google Scholar

31. Karami, A. M., Ødegård, J., Marana, M. H., Zuo, S., Jaafar, R., Mathiessen, H., et al., 2020: A major QTL for resistance to Vibrio anguillarum in rainbow trout. Front. Genet., 11, 607558. DOI: 10.3389/fgene.2020.607558. Open DOISearch in Google Scholar

32. Kumar, S., Abedin, M. M., Singh, A. K., Das, S., 2020: Role of phenolic compounds in plant-defensive mechanisms. In Plant Phenolics in Sustainable Agriculture, Springer, 517‒532. DOI: 10.1007/978-981-15-4890-1_22. Open DOISearch in Google Scholar

33. Jana, P., Karmakar, S., Roy, U., Paul, M., Bera, A. K. S., 2018: Phytobiotics in aquaculture health management: A review. J. Entomol. Zool. Stud., 6, 4, 1422–1429. Search in Google Scholar

34. Kumar, G., Menanteau-Ledouble, S., Saleh, M., El-Matbouli, M., 2015: Yersinia ruckeri, the causative agent of enteric redmouth disease in fish. Vet. Res., 46, 1, 1–10. DOI: 10.1186/s13567-015-0238-4. Open DOISearch in Google Scholar

35. Küpeli Akkol, E., Genç, Y., Karpuz, B., Sobarzo-Sánchez, E., Capasso, R., 2020: Coumarins and coumarin-related compounds in pharmacotherapy of cancer. Cancers, 12, 7, 1959. DOI: 10.3390/cancers12071959. Open DOISearch in Google Scholar

36. Lee, J. Y., Gao, Y., 2012: Review of the application of garlic, Allium sativum, in aquaculture. J. World Aquac. Soc., 43, 4, 447–458. DOI: 10.1111/j.1749-7345.2012.00581.x. Open DOISearch in Google Scholar

37. Leung, K. Y., Siame, B. A., Tenkink, B. J., Noort, R. J., Mok, Y. K., 2012: Edwardsiella tarda – virulence mechanisms of an emerging gastroenteritis pathogen. Microbes Infect., 14, 1, 26–34. DOI: 10.1016/j.micinf.2011.08.005. Open DOISearch in Google Scholar

38. Liu, H., Wang, Y., Cao, J., Jiang, H., Yao, J., Gong, G., et al., 2020: Antimicrobial activity and virulence attenuation of citral against the fish pathogen Vibrio alginolyticus. Aquaculture, 515, 734578. DOI: 10.1016/j.aquaculture.2019.734578. Open DOISearch in Google Scholar

39. Lulijwa, R., Rupia, E. J., Alfaro, A. C., 2020: Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquac., 12, 2, 640–663. DOI: 10.1111/raq.12344. Open DOISearch in Google Scholar

40. Siva, M., Shanmugam, K. R., Shanmugam, B., Venkata, S. G., Ravi, S., Sathyavelu, R. K., et al., 2016: Ocimum sanctum: A review on the pharmacological properties. Int. J. Basic Clin. Pharmacol., 5, 558–565. DOI: 10.18203/2319-2003.ijbcp20161491. Open DOISearch in Google Scholar

41. Madetoja, J., Nystedt, S., Wiklund, T., 2003: Survival and virulence of Flavobacterium psychrophilum in water microcosms. FEMS Microbiol. Ecol., 43, 2, 217–223. DOI: 10.1111/j.1574-6941.2003.tb01061.x. Open DOISearch in Google Scholar

42. Maiti, B., Shetty, M., Shekar, M., Karunasagar, I., Karunasagar, I., 2011: Recombinant outer membrane protein A (OmpA) of Edwardsiella tarda, a potential vaccine candidate for fish, common carp. Microbiol. Res., 167, 1, 1–7. DOI: 10.1016/j.micres.2011.02.002. Open DOISearch in Google Scholar

43. Menanteau-Ledouble, S., Kumar, G., Saleh, M., El-Matbouli, M., 2016: Aeromonas salmonicida: updates on an old acquaintance. Dis. Aquat. Org., 120, 1, 49–68. DOI: 10.3354/dao03006. Open DOISearch in Google Scholar

44. Miniero Davies, Y., Xavier de Oliveira, M. G., Paulo Vieira Cunha, M., Soares Franco, L., Pulecio Santos, S. L., Zanolli Moreno, L., et al., 2018: Edwardsiella tarda outbreak affecting fishes and aquatic birds in Brazil. Vet. Q., 38, 1, 99–105. DOI: 10.1080/01652176.2018.1540070. Open DOISearch in Google Scholar

45. Musa, N., Wei, L. S., Seng, C. T., Wee, W., Leong, L. K., 2008: Potential of edible plants as remedies of systemic bacterial disease infection in cultured fish. Glob. J. Pharmacol., 2, 2, 31–36. Search in Google Scholar

46. Mzula, A., Wambura, P. N., Mdegela, R. H., Shirima, G. M., 2019: Current state of modern biotechnological-based Aeromonas hydrophila vaccines for aquaculture: A systematic review. BioMed Res. Int., 2019. DOI: 10.1155/2019/3768948. Open DOISearch in Google Scholar

47. Navarrete, P., Toledo, I., Mardones, P., Opazo, R., Espejo, R., Romero, J., 2010: Effect of Thymus vulgaris essential oil on intestinal bacterial microbiota of rainbow trout, Oncorhynchus mykiss (Walbaum) and bacterial isolates. Aquac. Res., 41, 10, e667–e678. DOI: 10.1111/j.1365-2109.2010.02590.x. Open DOISearch in Google Scholar

48. Ndomou, S. C. H., Mube, H. K., 2023: The use of plants as phytobiotics: A new challenge. In Phytochemicals in Agriculture and Food, IntechOpen. DOI: 10.5772/intechopen.110731. Open DOISearch in Google Scholar

49. Nguyen, L. T., Farcas, A. C., Socaci, S. A., Tofana, M., Diaconeasa, Z. M., Pop, O. L., Salanta, L. C., 2020: An overview of saponins – a bioactive group. Bull. UASVM Food Sci. Technol., 77, 1, 25–36. DOI: 10.15835/buasvmcn-fst:2019.0036. Open DOISearch in Google Scholar

50. Nya, E. J., Dawood, Z., Austin, B., 2010: The garlic component, allicin, prevents disease caused by Aeromonas hydrophila in rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Dis., 33, 4, 293–300. DOI: 10.1111/j.1365-2761.2009.01121.x. Open DOISearch in Google Scholar

51. Okocha, R. C., Olatoye, I. O., Adedeji, O. B., 2018: Food safety impacts of antimicrobial use and their residues in aquaculture. Public Health Rev., 39, 1, 1–22. DOI: 10.1186/s40985-018-0099-2. Open DOISearch in Google Scholar

52. Oladeji, O. S., Adelowo, F. E., Ayodele, D. T., Odelade, K. A., 2019: Phytochemistry and pharmacological activities of Cymbopogon citratus: A review. Sci. Afr., 6, e00137. DOI: 10.1016/j.sciaf.2019.e00137. Open DOISearch in Google Scholar

53. Panche, A. N., Diwan, A. D., Chandra, S. R., 2016: Flavonoids: An overview. J. Nutr. Sci., 5, e47. DOI: 10.1017/jns.2016.41. Open DOISearch in Google Scholar

54. Paquet, V. E., Vincent, A. T., Moineau, S., Charette, S. J., 2019: Beyond the A‐layer: adsorption of lipopolysaccha-rides and characterization of bacteriophage‐insensitive mutants of Aeromonas salmonicida subsp. salmonicida. Mol. Microbiol., 112, 2, 667–677. DOI: 10.1111/mmi.14308. Open DOISearch in Google Scholar

55. Park, S. B., Aoki, T., Jung, T. S., 2012: Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet. Res., 43, 1, 1–11. DOI: 10.1186/1297-9716-43-67. Open DOISearch in Google Scholar

56. Pattanayak, P., Behera, P., Das, D., Panda, S. K., 2010: Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev., 4, 7, 95. DOI: 10.4103/0973-7847.65323. Open DOISearch in Google Scholar

57. Pepi, M., Focardi, S., 2021: Antibiotic-resistant bacteria in aquaculture and climate change: A challenge for health in the Mediterranean area. Int. J. Environ. Res. Public Health, 18, 11, 5723. DOI: 10.3390/ijerph18115723. Open DOISearch in Google Scholar

58. Pérez-Pascual, D., Rochat, T., Kerouault, B., Gómez, E., Neulat-Ripoll, F., Henry, C., et al., 2017: More than gliding: involvement of GldD and GldG in the virulence of Flavobacterium psychrophilum. Front. Microbiol., 8, 2168. DOI: 10.3389/fmicb.2017.02168. Open DOISearch in Google Scholar

59. Pérez-Sánchez, T., Mora-Sánchez, B., Balcázar, J. L., 2018: Biological approaches for disease control in aquaculture: Advantages, limitations and challenges. Trends Micro-biol., 26, 11, 896-903. DOI: 10.1016/j.tim.2018.05.002. Open DOISearch in Google Scholar

60. Preena, P. G., Swaminathan, T. R., Kumar, V. J. R., Singh, I. S. B., 2020: Antimicrobial resistance in aquaculture: A crisis for concern. Biologia, 75, 9, 1497–1517. DOI: 10.2478/s11756-020-00456-4. Open DOISearch in Google Scholar

61. Rashidian, G., Boldaji, J. T., Rainis, S., Prokić, M. D., Faggio, C., 2021: Oregano (Origanum vulgare) extract enhances zebrafish (Danio rerio) growth performance, serum and mucus innate immune responses and resistance against Aeromonas hydrophila challenge. Animals, 11, 2, 299. DOI: 10.3390/ani11020299. Open DOISearch in Google Scholar

62. Rashmi, H. B., Negi, P. S., 2020: Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int., 136, 109298. DOI: 10.1016/j.foodres.2020.109298. Open DOISearch in Google Scholar

63. Rasul, M. G., Majumdar, B. C., 2017: Abuse of antibiotics in aquaculture and it’s effects on human, aquatic animal and environment. Saudi J. Life Sci., 2, 3, 81–88. DOI: 10.21276/haya. Open DOISearch in Google Scholar

64. Rattanachaikunsopon, P., Phumkhachorn, P., 2010: Potential of cinnamon (Cinnamomum verum) oil to control Streptococcus iniae infection in tilapia (Oreochromis niloticus). Fish. Sci., 76, 2, 287–293. DOI: 10.1007/s12562-010-0218-6. Open DOISearch in Google Scholar

65. Reverter, M., Sarter, S., Caruso, D., Avarre, J. C., Combe, M., Pepey, E., et al., 2020: Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun., 11, 1, 1–8. DOI: 10.1038/s41467-020-15735-6. Open DOISearch in Google Scholar

66. Roy, A., 2017: A review on the alkaloids an important therapeutic compound from plants. IJPB, 3, 2, 1–9. Search in Google Scholar

67. Santos, L., Ramos, F., 2018: Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem. Int. J. Antimicrob. Agents, 52, 2, 135–143. DOI: 10.1016/j.ijantimicag.2018.03.010. Open DOISearch in Google Scholar

68. Sapkota, A., Sapkota, A. R., Kucharski, M., Burke, J., McKenzie, S., Walker, P., et al., 2008: Aquaculture practices and potential human health risks: Current knowledge and future priorities. Environ. Int., 34, 8, 1215–1226. DOI: 10.1016/j.envint.2008.04.009. Open DOISearch in Google Scholar

69. Saravanan, K., Sivaramakrishnan, T., Praveenraj, J., Kiruba-Sankar, R., Suma, D., Devi, V., et al., 2019: Phytochemical, antioxidant and antibacterial activity of Chromolaena odorata from Andaman Islands, India. Andaman Sci. Assoc., 24, 2, 123–130. Search in Google Scholar

70. Sargenti, M., Bartolacci, S., Luciani, A., Di Biagio, K., Baldini, M., Galarini, R., et al., 2020: Investigation of the correlation between the use of antibiotics in aquaculture systems and their detection in aquatic environments: A case study of the Nera river aquafarms in Italy. Sustainability, 12, 12, 5176. DOI: 10.3390/su12125176. Open DOISearch in Google Scholar

71. Schar, D., Klein, E. Y., Laxminarayan, R., Gilbert, M., Van Boeckel, T. P., 2020: Global trends in antimicrobial use in aquaculture. Sci. Rep., 10, 1, 1–9. DOI: 10.1038/s41598-020-78849-3. Open DOISearch in Google Scholar

72. Odeyemi, O. A., Asmat, A., Usup, G., 2012: Antibiotics resistance and putative virulence factors of Aeromonas hydro-phila isolated from estuary. J. Microbiol. Biotechnol. Food Sci., 1, 6, 1339–1357. Search in Google Scholar

73. Shang, A., Cao, S. Y., Xu, X. Y., Gan, R. Y., Tang, G. Y., Corke, H., et al., 2019: Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 8, 7, 246. DOI: 10.3390/foods8070246. Open DOISearch in Google Scholar

74. Sheng, L., Wang, L., 2021: The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Compr. Rev. Food Sci. Food Saf., 20, 1, 738–786. DOI: 10.1111/1541-4337.12671. Open DOISearch in Google Scholar

75. Spyridopoulou, K., Fitsiou, E., Bouloukosta, E., Tiptiri-Kourpeti, A., Vamvakias, M., Oreopoulou, A., et al., 2019: Extraction, chemical composition, and anticancer potential of Origanum onites L. essential oil. Molecules, 24, 14, 2612. DOI: 10.3390/molecules24142612. Open DOISearch in Google Scholar

76. Starliper, C. E., 2011: Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J. Adv. Res., 2, 2, 97–108. DOI: 10.1016/j.jare.2010.04.001. Open DOISearch in Google Scholar

77. Talpur, A. D., Ikhwanuddin, M., Bolong, A. M. A., 2013: Nutritional effects of ginger (Zingiber officinale Roscoe) on immune response of Asian sea bass, Lates calcarifer (Bloch) and disease resistance against Vibrio harveyi. Aquaculture, 400, 46–52. DOI: 10.1016/j.aquaculture.2013.02.043. Open DOISearch in Google Scholar

78. Tepe, B., Cakir, A., Sihoglu Tepe, A., 2016: Medicinal uses, phytochemistry, and pharmacology of Origanum onites (L.): A review. Chem. Biodivers., 13, 5, 504–520. DOI: 10.1002/cbdv.201500069. Open DOISearch in Google Scholar

79. Thilsted, S. H., James, D., Toppe, J., Subasinghe, R., Karunasagar, I., 2014: Maximizing the contribution of fish to human nutrition. In ICN2 Second International Confrence on Nutrition: Better Nutrition Better Lives, Rome, Italy, November 19–21, 1–16. Search in Google Scholar

80. Thurlow, C. M., Hossain, M. J., Sun, D., Barger, P., Foshee, L., Beck, B. H., et al., 2019: The gfc operon is involved in the formation of the O antigen capsule in Aero monas hydrophila and contributes to virulence in channel cat-fish. Aquaculture, 512, 734334. DOI: 10.1016/j.aquaculture.2019.734334. Open DOISearch in Google Scholar

81. Tobback, E., Decostere, A., Hermans, K., Haesebrouck, F., Chiers, K., 2007: Yersinia ruckeri infections in salmonid fish. J. Fish Dis., 30, 5, 257–268. DOI: 10.1111/j.1365-2761.2007.00816.x. Open DOISearch in Google Scholar

82. Vanholme, R., Demedts, B., Morreel, K., Ralph, J., Boer-jan, W., 2010: Lignin biosynthesis and structure. Plant Physiol., 153, 3, 895–905. DOI: 10.1104/pp.110.155119. Open DOISearch in Google Scholar

83. Wang, Y., Zhang, X. H., Austin, B., 2010: Comparative analysis of the phenotypic characteristics of high‐and low‐ virulent strains of Edwardsiella tarda. J. Fish Dis., 33, 12, 985–994. DOI: 10.1111/j.1365-2761.2010.01204.x. Open DOISearch in Google Scholar

84. Weerasekera, A. C., Samarasinghe, K., de Zoysa, H. K. S., Bamunuarachchige, T. C., Waisundara, V. Y., 2021: Cinnamomum zeylanicum: Morphology, antioxidant properties and bioactive compounds. In Antioxidants-Benefits, Sources, Mechanisms of Action. IntechOpen, 407–420. Search in Google Scholar

85. World Health Organization, 2019: New Report Calls for Urgent Action to Avert Antimicrobial Resistance Crisis. Updated April 29, 2019. Accessed April 29, 2019. https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis. Search in Google Scholar

86. Wrobel, A., Leo, J. C., Linke, D., 2019: Overcoming fish de-fences: The virulence factors of Yersinia ruckeri. Genes, 10, 9, 700. DOI: 10.3390/genes10090700. Open DOISearch in Google Scholar

87. Xu, T., Zhang, X. H., 2014: Edwardsiella tarda: An intriguing problem in aquaculture. Aquaculture, 431, 129–135. DOI: 10.1016/j.aquaculture.2013.12.001. Open DOISearch in Google Scholar

88. Zhang, X., Chen, F., Wang, M., 2015: Bioactive substances of animal origin. In Cheung, P. C. K., Mehta, M. B.: Handbook of Food Chemistry. Springer, Berlin, 1009–1033. Search in Google Scholar

89. Zhao, Y., Wu, Y., Wang, M., 2015: Bioactive substances of plant origin. In Cheung, P. C. K., Mehta, M. B.: Handbook of Food Chemistry. Springer, Berlin, 967–1008. Search in Google Scholar

eISSN:
2453-7837
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine