Otwarty dostęp

Dendrimers as Antimicrobial Agents in the Central Nervous System Infections. A Review


Zacytuj

1. Abd-El-Aziz, A. S., Agatemor, C., Etkin, N., Overy, D. P., Lanteigne, M., McQuillan, K., et al., 2015: Antimicrobial organometallic dendrimers with tunable activity against multidrug-resistant bacteria. Biomacromolecules, 16, 11, 3694‒3703. DOI: 10.1021/acs.biomac.5b01207. Open DOISearch in Google Scholar

2. Ayub, A., Wettig, S., 2022: An overview of nanotechnologies for drug delivery to the brain. Pharmaceutics, 14, 2. DOI: 10.3390/pharmaceutics14020224. Open DOISearch in Google Scholar

3. Bahar, A. A., Liu, Z., Totsingan, F., Buitrago, C., Kallen-bach, N., Ren, D., 2015: Synthetic dendrimeric peptide active against biofilm and persister cells of Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol., 99, 19, 8125‒8135. DOI: 10.1007/s00253-015-6645-7. Open DOISearch in Google Scholar

4. Barichello, T., Generoso, J. S., Simoes, L. R. R., Goularte, J. S., Petronilho, F., Saigal, P., et al., 2016: Role of micro-glial activation in the pathophysiology of bacterial meningitis. Mol. Neurobiol., 53, 3, 1770‒1781. DOI: 10.1007/s120 35-015-9107-4. Open DOISearch in Google Scholar

5. Bash, M. C., Matthias, K. A., 2017: Antibiotic resistance in Neisseria. In Mayers, D. L., Sobel, D. J., Ouellette, M., Kaye, K. S., Marchaim, D.: Antimicrobial Drug Resistance: Clinical and Epidemiological Aspects, Volume 2. Springer Cham., 843‒865. Search in Google Scholar

6. Borah, N., Gogoi, A., Saikia, J., 2022: Dendrimeric entities as chemical alternatives toward antimicrobial therapy. In Saha, T., Adhikari, M. D., Tiwary, B. K.: Alternatives to Antibiotics: Recent Trends and Future Prospects. Springer, 379‒400. Search in Google Scholar

7. Caminade, A. M.,Turrin, C. O., 2014: Dendrimers for drug delivery. J. Mater. Chem., 2, 26, 4055‒4066. DOI: 10.1039/c4tb00171k. Open DOISearch in Google Scholar

8. Coureuil, M., Lécuyer, H., Bourdoulous, S., Nassif, X., 2017: A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat. Rev. Microbiol., 15, 3, 149‒159. DOI: 10.1038/nrmicro.2016.178. Open DOISearch in Google Scholar

9. Davis, L. E., 2018: Acute bacterial meningitis. Continuum (Minneap. Minn.), 24, (5 Neuroinfectious Disease), 1264‒1283. DOI: 10.1212/con.0000000000000660. Open DOISearch in Google Scholar

10. Dodds, D. R., 2017: Antibiotic resistance: A current epilogue. Biochem. Pharmacol., 134, 139‒146. DOI: 10.1016/j.bcp.2016.12.005. Open DOISearch in Google Scholar

11. Doran, K. S., Fulde, M., Gratz, N., Kim, B. J., Nau, R., Prasadarao, N., et al., 2016: Host-pathogen interactions in bacterial meningitis. Acta Neuropathol., 131, 2, 185‒209. DOI: 10.1007/s00401-015-1531-z. Open DOISearch in Google Scholar

12. Ekizoğlu, M., 2017: Infectious diseases of the brain. In Gürsoy-Özdemir, Y., Bozdağ-Pehlivan, S., Sekerdag, E.: Nanotechnology Methods for Neurological Diseases and Brain Tumors. Elsevier. 291‒315. Search in Google Scholar

13. Falanga, A., Del Genio, V.,Galdiero, S., 2021: Peptides and dendrimers: How to combat viral and bacterial infections. Pharmaceutics, 13, 1, 23. DOI: 10.3390/pharmaceutics13010101. Open DOISearch in Google Scholar

14. Felczak, A., Wrońska, N., Janaszewska, A., Klajnert, B., Bryszewska, M., Appelhans, D., et al., 2012: Antimicrobial activity of poly (propylene imine) dendrimers. New J. Chem., 36, 11, 2215‒2222. Search in Google Scholar

15. Feng, Y., Zhang, H., Wu, Z., Wang, S., Cao, M., Hu, D., et al., 2014: Streptococcus suis infection: An emerging/reemerging challenge of bacterial infectious diseases ? Virulence, 5, 4, 477‒497. DOI: 10.4161/viru.28595. Open DOISearch in Google Scholar

16. Flexner, S., 1907: Experimental cerebro-spinal meningitis in monkeys. J. Exp. Med., 9, 2, 142‒167. DOI: 10.1084/jem.9.2.142. Open DOISearch in Google Scholar

17. Garcia-Gallego, S., Franci, G., Falanga, A., Gomez, R., Folliero, V., Galdiero, S., et al., 2017: Function oriented molecular design: Dendrimers as novel antimicrobials. Molecules, 22, 10. DOI: 10.3390/molecules22101581. Open DOISearch in Google Scholar

18. Gauro, R., Nandave, M., Jain, V. K., Jain, K., 2021: Advances in dendrimer-mediated targeted drug delivery to the brain. J. Nanopart. Res., 23, 3, 76. DOI: 10.1007/s11051-021-05175-8. Open DOISearch in Google Scholar

19. Gholami, M., Mohammadi, R., Arzanlou, M., Akbari Dourbash, F., Kouhsari, E., Majidi, G., et al., 2017: In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer. BMC Infect. Dis., 17, 1, 395. DOI: 10.1186/s12879-017-2513-7. Open DOISearch in Google Scholar

20. Giovan, R. A., Lavender, P. D., 2018: Central nervous system infections. Primary Care, 45, 3, 505. DOI: 10.1016/j.pop.2018.05.007. Open DOISearch in Google Scholar

21. He, Z. Y., Wei, X. W., Wei, Y. Q., 2017: Recent advances of nanostructures in antimicrobial therapy. In Grumezescu, A. M.: Antimicrobial Nanoarchitectonics: From Synthesis to Applications. 167‒194. Search in Google Scholar

22. Heckenberg, S. G., Brouwer, M. C., van de Beek, D., 2014: Bacterial meningitis. Handb. Clin. Neurol., 121, 1361‒1375. DOI: 10.1016/b978-0-7020-4088-7.00093-6. Open DOISearch in Google Scholar

23. Hoffman, O., Weber, R. J., 2009: Pathophysiology and treatment of bacterial meningitis. Ther. Adv. Neurol., 2, 6, 1‒7. DOI: 10.1177/1756285609337975. Open DOISearch in Google Scholar

24. Holmes, A. M., Heylings, J. R., Wan, K. W., Moss, G. P., 2019: Antimicrobial efficacy and mechanism of action of poly(amidoamine) (PAMAM) dendrimers against opportunistic pathogens. Int. J. Antimicrob. Agents, 53, 4, 500‒507. DOI: 10.1016/j.ijantimicag.2018.12.012. Open DOISearch in Google Scholar

25. Hou, S., Zhou, C., Liu, Z., Young, A. W., Shi, Z., Ren, D., et al., 2009: Antimicrobial dendrimer active against Esche richiacoli biofilms. Bioorg. Med. Chem. Lett., 19, 18, 5478‒5481. DOI: 10.1016/j.bmcl.2009.07.077. Open DOISearch in Google Scholar

26. Huang, D., Wu, D., 2018: Biodegradable dendrimers for drug delivery. Mater. Sci. Eng. C Mater. Biol. Appl., 90, 713‒727. DOI: 10.1016/j.msec.2018.03.002. Open DOISearch in Google Scholar

27. Huang, J., Li, Y. C., Orza, A., Lu, Q., Guo, P., Wang, L. Y., et al., 2016: Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv. Funct. Mater., 26, 22, 3818‒3836. DOI: 10.1002/adfm.201504185. Open DOISearch in Google Scholar

28. Chatterjee, A., Modarai, M., Naylor, N. R., Boyd, S. E., Atun, R., Barlow, J., et al., 2018: Quantifying drivers of antibiotic resistance in humans: A systematic review. Lancet Inf. Dis., 18, 12, E368‒E378. DOI: 10.1016/s1473-3099(18)30296-2. Open DOISearch in Google Scholar

29. Chen, C. Z., Beck-Tan, N. C., Dhurjati, P., van Dyk, T. K., LaRossa, R. A., Cooper, S. L., 2000: Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: Structure-activity studies. Biomacromolecules, 1, 3, 473‒480. DOI: 10.1021/bm0055495. Open DOISearch in Google Scholar

30. Chis, A. A., Dobrea, C., Morgovan, C., Arseniu, A. M., Rus, L. L., Butuca, A., et al., 2020: Applications and limitations of dendrimers in biomedicine. Molecules, 25, 17. DOI: 10.3390/molecules25173982. Open DOISearch in Google Scholar

31. Christaki, E., Marcou, M., Tofarides, A., 2020: Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. J. Mol. Evol., 88, 1, 26‒40. DOI: 10.1007/s00239-019-09914-3. Open DOISearch in Google Scholar

32. Kalhapure, R. S., Suleman, N., Mocktar, C., Seedat, N., Govender, T., 2015: Nanoengineered drug delivery systems for enhancing antibiotic therapy. J. Pharm. Sci., 104, 3, 872‒905. DOI: 10.1002/jps.24298. Open DOISearch in Google Scholar

33. Kimura, S., Harashima, H., 2020: Current status and challenges associated with CNS-targeted gene delivery across the BBB. Pharmaceutics, 12, 12. DOI: 10.3390/pharmaceutics12121216. Open DOISearch in Google Scholar

34. Kullberg, B. J., Vrijmoeth, H. D., van de Schoor, F., Hovius, J. W., 2020: Lyme borreliosis: Diagnosis and management. BMJ, 369, m1041. DOI: 10.1136/bmj.m1041. Open DOISearch in Google Scholar

35. Kumar, L., Verma, S., Vaidya, B., Mehra, N. K., 2017: Nanocarrier-assisted antimicrobial therapy against intracellular pathogens. In Ficai, A., Grumezescu, A. M.: Nanostructures for Antimicrobial Therapy. Elsevier, 293‒324. Search in Google Scholar

36. Kumar, M., Sarma, D. K., Shubham, S., Kumawat, M., Verma, V., Nina, P. B., et al., 2021: Futuristic non-antibiotic the apies to combat antibiotic resistance: A review. Front. Microbiol., 12. DOI: 10.3389/fmicb.2021.609459. Open DOISearch in Google Scholar

37. Kumari, P., Luqman, S., Meena, A., 2020: Nanomaterials: A promising tool for drug delivery. In Daima, H. K., Navya, P. N., Ranjan, S., Dasgupta, N., Lichtfouse, E.: Nanoscience in Medicine, 1, 39. 1‒49. Search in Google Scholar

38. Ladd, E., Sheikhi, A., Li, N., van de Ven, T. G. M., Kakkar, A., 2017: Design and synthesis of dendrimers with facile surface group functionalization, and an evaluation of their bactericidal efficacy. Molecules, 22, 6. DOI: 10.3390/molecules22060868. Open DOISearch in Google Scholar

39. LaPenna, P. A., Roos, K. L., 2019: Bacterial infections of the central nervous system. Semin. Neurol., 39, 3, 334‒342. DOI: 10.1055/s-0039-1693159. Open DOISearch in Google Scholar

40. Le Guennec, L., Coureuil, M., Nassif, X., Bourdoulous, S., 2020: Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol., 22, 1, e13132. DOI: 10.1111/cmi.13132. Open DOISearch in Google Scholar

41. Liechti, F. D., Grandgirard, D., Leib, S. L., 2015: Bacterial meningitis: insights into pathogenesis and evaluation of new treatment options: a perspective from experimental studies. Future Microbiol., 10, 7, 1195‒1213. DOI: 10.2217/fmb.15.43. Open DOISearch in Google Scholar

42. Longmire, M., Choyke, P. L., Kobayashi, H., 2008: Dendrimer-based contrast agents for molecular imaging. Curr. Top. Med. Chem., 8, 14, 1180‒1186. DOI: 10.2174/156802608785 849021. Open DOISearch in Google Scholar

43. Mhlwatika, Z., Aderibigbe, B. A., 2018: Application of dendrimers for the treatment of infectious diseases. Molecules, 23, 9. DOI: 10.3390/molecules23092205. Open DOISearch in Google Scholar

44. Mintzer, M. A., Dane, E. L., O’Toole, G. A., Grinstaff, M. W., 2012: Exploiting dendrimer multivalency to combat emerging and re-emerging infectious diseases. Mol. Pharm., 9, 3, 342‒354. DOI: 10.1021/mp2005033. Open DOISearch in Google Scholar

45. Morrison, L., Zembower, T. R., 2020: Antimicrobial resistance. Gastrointest. Endosc. Clin. N. Am., 30, 4, 619‒635. DOI: 10.1016/j.giec.2020.06.004. Open DOISearch in Google Scholar

46. Nau, R., Djukic, M., Spreer, A., Ribes, S., Eiffert, H., 2015: Bacterial meningitis: An update of new treatment options. Expert Rev. Anti. Infect. Ther., 13, 11, 1401‒1423. DOI: 10.1586/14787210.2015.1077700. Open DOISearch in Google Scholar

47. Nazli, A., He, D. L., Liao, D., Khan, M. Z. I., Huang, C., He, Y., 2022: Strategies and progresses for enhancing targeted antibiotic delivery. Adv. Drug Deliv. Rev., 189, 114502. DOI: 10.1016/j.addr.2022.114502. Open DOISearch in Google Scholar

48. Nikzamir, M., Hanifehpour, Y., Akbarzadeh, A., Panahi, Y., 2021: Applications of dendrimers in nanomedicine and drug delivery: A review. J. Inorg. Organomet. Polym. Mater., 31, 6, 2246‒2261. DOI: 10.1007/s10904-021-01925-2. Open DOISearch in Google Scholar

49. Omidi, Y., Kianinejad, N., Kwon, Y., Omidian, H., 2021: Drug delivery and targeting to brain tumors: Considerations for crossing the blood-brain barrier. Expert. Rev. Clin. Pharmacol., 14, 3, 357‒381. DOI: 10.1080/17512433.2021.1887729. Open DOISearch in Google Scholar

50. Oppenheim, B. A., 1997: Antibiotic resistance in Neisseria meningitidis. Clin. Infect. Dis., 24, S98‒S101. DOI: 10.1093/clinids/24.Supplement_1.S98. Open DOISearch in Google Scholar

51. Pardon, E., Laeremans, T., Triest, S., Rasmussen, S. G. F., Wohlkonig, A., Ruf, A., et al., 2014: A general protocol for the generation of nanobodies for structural biology. Nature Protocols, 9, 3, 674‒693. DOI: 10.1038/nprot.2014.039. Open DOISearch in Google Scholar

52. Perry, J., Waglechner, N., Wright, G., 2016: The prehistory of antibiotic resistance. Cold Spring Harb. Perspect., 6, 6. DOI: 10.1101/cshperspect.a025197. Open DOISearch in Google Scholar

53. Pompilio, A., Geminiani, C., Mantini, P., Siriwardena, T. N., Di Bonaventura, I., Reymond, J. L., et al., 2018: Peptide dendrimers as “lead compounds” for the treatment of chronic lung infections by Pseudomonas aeruginosa in cystic fibrosis patients: In vitro and in vivo studies. Infect. Drug Resist., 11, 1767‒1782. DOI: 10.2147/idr.S168868. Open DOISearch in Google Scholar

54. Pulgar, V. M., 2018: Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci., 12, 1019. DOI: 10.3389/fnins.2018.01019. Open DOISearch in Google Scholar

55. Rabiee, N., Ahmadi, S., Arab, Z., Bagherzadeh, M., Safarkhani, M., Nasseri, B., et al., 2020: Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: A review. Int. J. Nanomed., 15, 4237‒4256. DOI: 10.2147/ijn.S248736. Open DOISearch in Google Scholar

56. Rajak, B. L., Kumar, R., Gogoi, M., Patra, S., 2020: Antimicrobial activity of nanomaterials. In Daima, H. K., Navya, P. N., Ranjan, S., Dasgupta, N., Lichtfouse, E.: Nano-science in Medicine, 1, 39. 147‒185. Search in Google Scholar

57. Reygaert, W. C., 2018: An overview of the antimicrobial resistance mechanisms of bacteria. Aims Microbiol., 4, 3, 482‒501. DOI: 10.3934/microbiol.2018.3.482. Open DOISearch in Google Scholar

58. Rizvi, S. M. D., Hussain, T., Ahmed, A. B. F., Alshammari, T. M., Moin, A., Ahmed, M. Q., et al., 2018: Gold nano-particles: A plausible tool to combat neurological bacterial infections in humans. Biomed. Pharmacother., 107, 7‒18. DOI: 10.1016/j.biopha.2018.07.130. Open DOISearch in Google Scholar

59. Santos, A., Veiga, F., Figueiras, A., 2020: Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications. Materials, 13, 1. DOI: 10.3390/ma13010065. Open DOISearch in Google Scholar

60. Scorciapino, M. A., Serra, I., Manzo, G., Rinaldi, A. C., 2017: Antimicrobial dendrimeric peptides: Structure, activity and new therapeutic applications. Int. J. Mol. Sci., 18, 3. DOI: 10.3390/ijms18030542. Open DOISearch in Google Scholar

61. Scheld, W. M., Koedel, U., Nathan, B., Pfister, H. W., 2002: Pathophysiology of bacterial meningitis: Mechanism(s) of neuronal injury. J. Infect. Dis., 186, S225‒S233. DOI: 10.1086/344939. Open DOISearch in Google Scholar

62. Somani, S., Dufes, C., 2014: Applications of dendrimers for brain delivery and cancer therapy. Nanomedicine, 9, 15, 2403‒2414. DOI: 10.2217/nnm.14.130. Open DOISearch in Google Scholar

63. Spirescu, V. A., Chircov, C., Grumezescu, A. M., Andronescu, E., 2021: Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview. Polymers, 13, 5. DOI: 10.3390/polym13050724. Open DOISearch in Google Scholar

64. Stanek, G., Wormser, G. P., Gray, J., Strle, F., 2012: Lyme borreliosis. Lancet, 379, 9814, 461‒473. DOI: 10.1016/s0140-6736(11)60103-7. Open DOISearch in Google Scholar

65. Staneva, D., Angelova, S., Vasileva-Tonkova, E., Grozdanov, P., Nikolova, I., Grabchev, I., 2020: Synthesis, photophysical characterisation and antimicrobial activity of a new anionic PAMAM dendrimer. J. Photochem. Photobiol., 403, 112878. Search in Google Scholar

66. Svenningsen, S. W., Frederiksen, R. F., Counil, C., Ficker, M., Leisner, J. J., Christensen, J. B., 2020: Synthesis and antimicrobial properties of a ciprofloxacin and PAMAM-dendrimer conjugate. Molecules, 25, 6. DOI: 10.3390/molecules25061389. Open DOISearch in Google Scholar

67. Tarach, P., Janaszewska, A., 2021: Recent advances in pre-clinical research using PAMAM dendrimers for cancer gene therapy. Int. J. Mol. Sci., 22, 6. DOI: 10.3390/ijms22062912. Open DOISearch in Google Scholar

68. Tomalia, D. A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., et al., 1985: A new class of polymers ‒ star-bust-dendritic macromolecules. Polymer J., 17, 1, 117‒132. DOI: 10.1295/polymj.17.117. Open DOISearch in Google Scholar

69. van Samkar, A., Brouwer, M. C., Schultsz, C., van der Ende, A., van de Beek, D., 2015: Streptococcus suis meningitis: A systematic review and meta-analysis. PLOS Negl. Trop. Dis., 9, 10, e0004191. DOI: 10.1371/journal.pntd.000 4191. Open DOISearch in Google Scholar

70. Vega, N. M., Gore, J., 2014: Collective antibiotic resistance: mechanisms and implications. Curr. Opin. Microbiol., 21, 28‒34. DOI: 10.1016/j.mib.2014.09.003. Open DOISearch in Google Scholar

71. Velasco-Aguirre, C., Morales, F., Gallardo-Toledo, E., Guerrero, S., Giralt, E., Araya, E., et al., 2015: Peptides and proteins used to enhance gold nanoparticle delivery to the brain: preclinical approaches. Int. J. Nanomed., 10, 4919‒4936. DOI: 10.2147/ijn.S82310. Open DOISearch in Google Scholar

72. Zhu, Y. F., Liu, C. Y., Pang, Z. Q., 2019: Dendrimer-based drug delivery systems for brain targeting. Biomolecules, 9, 12. DOI: 10.3390/biom9120790. Open DOISearch in Google Scholar

eISSN:
2453-7837
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Molecular Biology, Biotechnology, Microbiology and Virology, Medicine, Veterinary Medicine