1. bookTom 29 (2021): Zeszyt 4 (December 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1898-9934
Pierwsze wydanie
09 Jun 2008
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Automatization of Ternary Boolean Algebras

Data publikacji: 09 Jul 2022
Tom & Zeszyt: Tom 29 (2021) - Zeszyt 4 (December 2021)
Zakres stron: 153 - 159
Przyjęty: 30 Sep 2021
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1898-9934
Pierwsze wydanie
09 Jun 2008
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17. Otwórz DOISearch in Google Scholar

[2] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6. Otwórz DOISearch in Google Scholar

[3] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.10.1017/CBO9780511809088 Search in Google Scholar

[4] Adam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi:10.1007/s10817-015-9333-5. Otwórz DOISearch in Google Scholar

[5] Adam Grabowski. Robbins algebras vs. Boolean algebras. Formalized Mathematics, 9(4): 681–690, 2001. Search in Google Scholar

[6] George Grätzer. General Lattice Theory. Academic Press, New York, 1978.10.1007/978-3-0348-7633-9 Search in Google Scholar

[7] Albert A. Grau. Ternary Boolean algebra. Bulletin of the American Mathematical Society, 53(6):567–572, 1947. doi:bams/1183510797. Otwórz DOISearch in Google Scholar

[8] E. V. Huntington. New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell’s Principia Mathematica. Trans. AMS, 35:274–304, 1933.10.1090/S0002-9947-1933-1501684-X Search in Google Scholar

[9] Violetta Kozarkiewicz and Adam Grabowski. Axiomatization of Boolean algebras based on Sheffer stroke. Formalized Mathematics, 12(3):355–361, 2004. Search in Google Scholar

[10] Dominik Kulesza and Adam Grabowski. Formalization of quasilattices. Formalized Mathematics, 28(2):217–225, 2020. doi:10.2478/forma-2020-0019. Otwórz DOISearch in Google Scholar

[11] William McCune and Ranganathan Padmanabhan. Automated Deduction in Equational Logic and Cubic Curves. Springer-Verlag, Berlin, 1996.10.1007/3-540-61398-6 Search in Google Scholar

[12] Ranganathan Padmanabhan and William McCune. Computers and Mathematics with Applications, 29(2):13–16, 1995.10.1016/0898-1221(94)00213-5 Search in Google Scholar

[13] Ranganathan Padmanabhan and Sergiu Rudeanu. Axioms for Lattices and Boolean Algebras. World Scientific Publishers, 2008.10.1142/7007 Search in Google Scholar

[14] Damian Sawicki and Adam Grabowski. On weakly associative lattices and near lattices. Formalized Mathematics, 29(2):77–85, 2021. doi:10.2478/forma-2021-0008. Otwórz DOISearch in Google Scholar

[15] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–222, 1990. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo