Otwarty dostęp

Splitting Fields

  
30 gru 2021

Zacytuj
Pobierz okładkę

Summary. In this article we further develop field theory in Mizar [1], [2]: we prove existence and uniqueness of splitting fields. We define the splitting field of a polynomial pF [X] as the smallest field extension of F, in which p splits into linear factors. From this follows, that for a splitting field E of p we have E = F (A) where A is the set of p’s roots. Splitting fields are unique, however, only up to isomorphisms; to be more precise up to F -isomorphims i.e. isomorphisms i with i|F = IdF. We prove that two splitting fields of pF [X] are F -isomorphic using the well-known technique [4], [3] of extending isomorphisms from F1F2 to F1(a) → F2(b) for a and b being algebraic over F1 and F2, respectively.

Język:
Angielski
Częstotliwość wydawania:
1 razy w roku
Dziedziny czasopisma:
Informatyka, Informatyka, inne, Matematyka, Matematyka ogólna