[
Andersen, A.N., 1989. How important is seed predation to recruitment in stable populations of long-lived perennials? Oecologia, 81: 310–315. https://doi.org/10.1007/BF00377076
]Search in Google Scholar
[
Augspurger, C.K., Kelly, C.K., 1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia, 61: 211–217. https://doi.org/10.1007/BF00396763
]Search in Google Scholar
[
Azad, M.S., Musa, Z.A., Matin, A., 2010. Effect of pre-sowing treatments on seed germination of Melia azedarach. Journal of Forestry Research, 21(2): 193−196. https://doi.org/10.1007/s11676-010-0031-1
]Search in Google Scholar
[
Badalamenti, E., Cusimano, D., La Mantia, T., Pasta, S., 2013. The recent spread of the invasive woody alien plant Melia azedarach L. (Meliaceae) in Sicily. Il Naturalista Siciliano, 4 (37): 605–613. [cit. 2024-08-19]. https://hdl.handle.net/10447/94518
]Search in Google Scholar
[
Barnea, A., Yom-Tov, Y., Friedman, J., 1991. Does ingestion by birds affect seed germination? Functional Ecology, 394–402. https://doi.org/10.2307/2389811
]Search in Google Scholar
[
Bartczak, M., Lisiecka, J., Knaflewski, M., 2010. Correla tion between selected parameters of planting material and strawberry yield. Folia Horticulturae, 22: 9–12. DOI: 10.2478/fhort-2013-0144
]Search in Google Scholar
[
Batcher, M.S., 2000. Element stewardship abstract for Melia azedarach. Arlington, Virginia: The Natural Conservancy. 7 p.
]Search in Google Scholar
[
Bazzaz, F.A., Chiariello, N.R., Coley, P.D., Pitelka, L.F., 1987. Allocating resources to reproduction and defense. BioScience, 37(1): 58–67. https://doi.org/10.2307/1310178
]Search in Google Scholar
[
Bello, C., Galetti, M., Montan, D., Pizo, M.A., Mariguela, T.C., Culot, L., Bufalo, F., Labecca, F., Pedrosa, F., Constantini, R., Emer, C., Silva, W.R., da Silva, F.R., Ovaskainen, O., Jordano, P., 2017. Atlantic frugivory: a plant-frugivore interaction data set for the Atlantic Forest. Ecology, 98 (6): 1729. https://doi.org/10.1002/ecy.1818
]Search in Google Scholar
[
Botha, C.J., Penrith, M.L., 2009. Potential plant poisoning in dogs and cats in southern Africa. Journal of the South African Veterinary Association, 80: 63–74. [cit. 2024-08-07]. https://hdl.handle.net/10520/EJC99818
]Search in Google Scholar
[
Burns, K.C., 2013. What causes size coupling in fruit–frugivore interaction webs? Ecology, 94: 295–300. https://doi.org/10.1890/12-1161.1
]Search in Google Scholar
[
Carbone, M.S., Czimczik, C.I., Keenan, T.F., Murakami, P.F., Pederson, N., Schaberg, P.G., Richardson, A.D., 2013. Age, allocation and availability of non-structural carbon in mature red maple trees. The New Phytologist, 200: 1145–1155. https://doi.org/10.1111/nph.12448
]Search in Google Scholar
[
Champion, H.G., Seth, S.K., 1968. A revised classification of forest types in India. New Delhi: Manager of Publications, Government of India. 404 p.
]Search in Google Scholar
[
Chapman, C.A., Chapman, L.J., Wangham, R., Hunt, K., Gebo, D., Gardner, L., 1992. Estimators of fruit abundance of tropical trees. Biotropica, 24: 527–531. https://doi.org/10.2307/2389015
]Search in Google Scholar
[
Chauhan, P.S., Manhas, R.K., Bhandari, D., Negi, J.D.S., 2004. Carbon stock assessment in old growth Pinus rox burghii Spreng. plantation of Forest Research Institute, New Forest, Dehra Dun, India. Indian Journal of Forestry, 27 (1): 45–49. DOI: 10.54207/bsmps1000-2004-7QLM25
]Search in Google Scholar
[
Chen, J., Deng, X.B., Bai, Z.L., Yang, O., Chen, G.Q., Liu, Y., Liu, Z.Q., 2001. Fruit characteristics and Muntiacus muntijak vaginalis (Muntjac) visits to individual plants of Choerospondias axillaris. Biotropica, 33: 718–722. https://doi.org/10.1646/0006-3606(2001)033[0718:FCAMMV]2.0.CO;2
]Search in Google Scholar
[
Crawley, M.J., 1992. Seed predators and plant population dynamics. In Fenner, M. (ed.). Seeds, the ecology of regeneration in plant communities. Wallingford: CAB International, p. 157–191.
]Search in Google Scholar
[
Datta, A., 1998. Hornbill abundance in unlogged forest, selectively logged forest and a forest plantation in Arunachal Pradesh, India. Oryx, 32 (4): 285–294. https://doi.org/10.1046/j.1365-3008.1998.d01-58.x
]Search in Google Scholar
[
De Steven, D., Wright, S.J., 2002. Consequences of variable reproduction for seedling recruitment in three neo-tropical tree species. Ecology, 83: 2315–2327. https://doi.org/10.1890/0012-9658(2002)083[2315:COVRFS]2.0.CO;2
]Search in Google Scholar
[
Dirr, M. A., Heuser, C.W., 1987. The reference manual of woody plant propagation. Athens, GA: Varsity Press. 239 p.
]Search in Google Scholar
[
Dlamini, P., Zachariades, C., Downs, C.T., 2018. The effect of frugivorous birds on seed dispersal and germination of the invasive Brazilian pepper tree (Schinus terebinthifolius) and Indian laurel (Litsea glutinosa). South African Journal of Botany, 114: 61–68. https://doi.org/10.1016/j.sajb.2017.10.009
]Search in Google Scholar
[
García-Rodríguez, A., Albrecht, J., Farwig, N., Frydryszak, D., Parres, A., Schabo, D.G., Selvaa, N., 2022. Functional complementarity of seed dispersal services provided by birds and mammals in an alpine ecosystem. Journal of Ecology, 110: 232–247. https://doi.org/10.1111/1365-2745.13799
]Search in Google Scholar
[
Genes, L., Dirzo, R., 2022. Restoration of plant-animal interactions in terrestrial ecosystems. Biological Conservation, 265: 109393. https://doi.org/10.1016/j.biocon.2021.109393
]Search in Google Scholar
[
Green, R.J., 1993. Avian seed dispersal in and near subtropical rainforests. Wildlife Research, 20: 535–557. https://doi.org/10.1071/WR9930535
]Search in Google Scholar
[
Greene, D.F., Johnson, E.A., 1994. Estimating the mean annual seed production of trees. Ecology, 75 (3): 642–647. https://doi.org/10.2307/1941722
]Search in Google Scholar
[
Han, Q., Kabeya, D., Iio, A., Kakubari, Y., 2008. Masting in Fagus crenata and its influence on the nitrogen content and dry mass of winter buds. Tree Physiology, 28 (8): 1269–1276. https://doi.org/10.1093/treephys/28.8.1269
]Search in Google Scholar
[
Howe, H.F., 1980. Monkey dispersal and waste of a neotropical fruit. Ecology, 61 (4): 944–959. https://doi.org/10.2307/1936763
]Search in Google Scholar
[
Howe, H.F., Smallwood, J., 1982. Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13: 201–228. http://www.jstor.org/stable/2097067
]Search in Google Scholar
[
Huang, R.C., Tadera, K., Yagi, F., Minami, Y., Okamura, H., Iwagawat, T., Nakatani, M., 1996. Limonoids from Melia azedarach. Phytochemistry, 43: 581–583. https://doi.org/10.1016/0031-9422(96)00353-6
]Search in Google Scholar
[
Hulme, P.E., Benkman, C.W., 2002. Granivory. In Herrera, C., Pellmyr, O. (eds). Plant-animal interactions: an evolutionary approach. New York: Blackwell Scientific Publications. 132–154.
]Search in Google Scholar
[
Ichie, T., Nakagawa, M., 2013. Dynamics of mineral nutrient storage for mast reproduction in the tropical emergent tree Dryobalanops aromatica. Ecological Research, 28 (2): 151–158. https://doi.org/10.1007/s11284-011-0836-1
]Search in Google Scholar
[
Janzen, D.H., 1970. Herbivores and number of tree species in tropical forests. American Naturalist, 104: 501–28. https://doi.org/10.1086/282687
]Search in Google Scholar
[
Jennings, S., Baima, A.M.V., 2005. The influence of population and forest structure on fruit production in mahogany (Swietenia macrophylla King) and their consequences for sustainable management. International Forestry Review, 7: 363–369. https://doi.org/10.1505/ifor.2005.7.4.363
]Search in Google Scholar
[
Johnson, C., Raiford, T., Whitley, K., 2005. Initial crown diameter of transplants influences marketable yield components of two strawberry cultivars in annual hill production system. International Journal of Fruit Science, 5: 23–29. https://doi.org/10.1300/J492v05n04_03
]Search in Google Scholar
[
Jones, F.A., Comita, L.S., 2008. Neighbourhood density and genetic relatedness interact to determine fruit set and abortion rates in a continuous tropical tree population. Proceedings of the Royal Society of London, B, Biological Sciences, 275: 2759–2767. https://doi.org/10.1098/rspb.2008.0894
]Search in Google Scholar
[
Jordano, P., 1983. Fig-seed predation and dispersal by birds. Biotropica, 15: 38–41. https://doi.org/10.2307/2387996
]Search in Google Scholar
[
Jordano, P., Schupp, E.W., 2000. Seed disperser effectiveness: the quantity component and patterns of seed rain for Prunus mahaleb. Ecological Monographs, 70: 591–615. https://doi.org/10.1890/0012-9615(2000)070[0591:SDETQC]2.0.CO;2
]Search in Google Scholar
[
Kainer, K.A., Wadt, L.H.O., Staudhammer, C.L., 2007. Explaining variation in Brazil nut fruit production. Forest Ecology and Management, 250: 244–255. https://doi.org/10.1016/j.foreco.2007.05.024
]Search in Google Scholar
[
Kanwal, Q., Hussain, I., Siddiqui, L.H., Javaid, A., 2011. Antimicrobial activity screening of isolated flavonoids from Azadirachta indica leaves. Journal of the Serbian Chemical Society, 76 (3): 375–384. https://doi.org/10.2298/JSC100406027K
]Search in Google Scholar
[
Keith, S., Urban, E.K., Fry, C.H., 1992. The birds of Africa. Volume IV. London: Academic Press Limited. 609 p. Khaiper, M., Dhanda, S.K., Ahlawat, K.S., Poonia, P.K.,
]Search in Google Scholar
[
Kumar, A., Verma, P., Chugh, R., Jangra, M., 2023. Unlocking the growth potential of Melia azedarach seedlings: the synergistic impact of Glomus mosseae and pre-sowing treatments. In Biological Forum–An International Journal, 15 (8): 371–377. DOI: 10.13140/RG.2.2.14455.39843
]Search in Google Scholar
[
Khan, A.V., 2002. Ethnobotanical studies on plants with medicinal and anti-bacterial properties. PhD thesis. Aligarh Muslim University, Aligarh. 293 p.
]Search in Google Scholar
[
Khan, A.V., Ahmed, Q.U., Mir, M.R., Shukla, I. Khan, A.A., 2011. Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains. Asian Pacific Journal of Tropical Biomedicine, 1 (6): 452–455. DOI: 10.1016/S2221-1691(11) 60099-3
]Search in Google Scholar
[
Khanduri, V.P., 2022. Birds visiting flowers of Erythrina suberosa: their abundance, frequency of visits and role as pollinators in a sub-tropical montane forest of Garhwal Himalaya. Polish Journal of Ecology, 70 (2-3): 117–127. https://doi.org/10.3161/15052249PJE2020.70.2.005
]Search in Google Scholar
[
Khanduri, V.P., 2023. Pollen limitation failing reproductive success in selected animal pollinated trees of tropical moist deciduous forest of north-eastern hill region, India. Hacquetia, 221: 117–129. https://doi.org/10.2478/hacq-2022-0014
]Search in Google Scholar
[
Khanduri, V.P., Sukumaran, A., Sharma, C.M., 2019. Male skewed sex ratio in Myricaesculenta: a dioecious tree species. Trees, 33 (4): 1157–1165. https://doi.org/10.1007/s00468-019-01850-5
]Search in Google Scholar
[
Klimas, C.A., Kainer, K.A., Wadt, L.H., Staudhammer, C.L., Rigamonte-Azevedo, V., Freire Correia, M., da Silva Lima, L.M., 2012. Control of Carapa guianensis phenology and seed production at multiple scales: a five-year study exploring the influences of tree attributes, habitat heterogeneity and climate cues. Journal of Tropical Ecology, 28: 105–118. DOI: 10.1017/S0266467411000630
]Search in Google Scholar
[
Kohyama, T., Suzuki, E., Partomihardjo, T., Yamada, T., Kubo, T., 2003. Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. Journal of Ecology, 91: 797–806. https://doi.org/10.1046/j.1365-2745.2003.00810.x
]Search in Google Scholar
[
Korine, C., Izhaki, I., Arad, Z., 1999. Is the Egyptian fruit-bat Rousettus aegyptiacus a pest in Israel? An analysis of the bat’s diet and implications for its conservation. Biological Conservation, 88: 301–306. https://doi.org/10.1016/S0006-3207(98)00126-8
]Search in Google Scholar
[
Levine, J.M., Murrell, D., 2003. Community-level consequences of seed dispersal patterns. Annual Review of Ecology, Evolution, and Systematics, 34: 549–574. https://doi.org/10.1146/annurev.ecolsys.34.011802.132400
]Search in Google Scholar
[
Mabberley, D.J., 1984. A monograph of Melia in Asia and the Pacific. The history of white cedar and persian lilac. Gardens’ Bulletin Singapore, 37: 49–64.
]Search in Google Scholar
[
Malhi, C.S., Brar, S.S., 1987. Damage to Ber (Zizyphus mauritiana Umran) by Rose-ringed Parakeet at Ludhiana. Indian Journal of Forestry, 8: 290–292.
]Search in Google Scholar
[
Minor, D.M., Kobe, R.K., 2017. Masting synchrony in northern hardwood forests: super producers govern population fruit production. Journal of Ecology, 105 (4): 987–998. https://doi.org/10.1111/1365-2745.12729
]Search in Google Scholar
[
Minor, D.M., Kobe, R.K., 2019. Fruit production is influenced by tree size and size-asymmetric crowding in a wet tropical forest. Ecology and Evolution, 9 (3): 1458–1472. https://doi.org/10.1002/ece3.4867
]Search in Google Scholar
[
Mittelbach, G.G., Gross, K.L., 1984. Experimental studies of seed predation in old-fields. Oecologia, 65: 7–13. https://doi.org/10.1007/BF00384455
]Search in Google Scholar
[
Moore, P.D., 2001. The guts of seed dispersal. Nature, 414 (6862): 406–407. https://doi.org/10.1038/35106677
]Search in Google Scholar
[
Nabe-Nielsen, J., Kollmann, J., Peña-Claros, M., 2009. Effects of liana load, tree diameter and distances between conspecifics on seed production in tropical timber trees. Forest Ecology and Management, 257: 987–993. https://doi.org/10.1016/j.foreco.2008.10.033
]Search in Google Scholar
[
Obeso, J.R., 2002. The costs of reproduction in plants. New Phytologist, 155: 321–348. https://doi.org/10.1046/j.1469-8137.2002.00477.x
]Search in Google Scholar
[
Okimat, J.P., Babweteera, F., Ehbrecht, M., 2024. Intra-specific variation in fruit production of African mahogany (Khaya anthotheca) in a semi-deciduous East African rainforest. African Journal of Ecology, 62 (1): e13224. https://doi.org/10.1111/aje.13224
]Search in Google Scholar
[
Osuri, A.M., Ratnam, J., Varma, V., Alvarez-Loayza, P., Hurtado Astaiza, J., Bradford, M., et al., 2016. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nature Communications, 7: 11351. https://doi.org/10.1038/ncomms11351
]Search in Google Scholar
[
Owens, J.N., 1995. Constraints to seed production: temperate and tropical forest trees. Tree Physiology, 15 (7-8): 477–484. https://doi.org/10.1093/treephys/15.7-8.477
]Search in Google Scholar
[
Peres, C., Emilio, T., Schietti, J., Desmoulière, S., Levi, T., 2016. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America, 113: 892–897. https://doi.org/10.1073/pnas.1516525113
]Search in Google Scholar
[
Pizo, M.A., 1997. Seed dispersal and predation in two populations of Cabralea canjerana (Meliaceae) in the Atlantic Forest of Southeastern Brazil. Journal of Tropical Ecology, 13: 559–577. DOI: 10.1017/S0266467400010713
]Search in Google Scholar
[
Pradhan, P., Sukumaran, A., Khanduri, V.P., Singh, B., Rawat, D., Riyal, M.K., Kumar, M., Pinto, M.M.S.C., 2024. Effect of crown layers on reproductive effort and success in andromonoecious Aesculus indica (Wall. ex Camb.) Hook (Sapindaceae) in a temperate forest of Garhwal Himalaya. Plants, 13(2): 183. https://doi.org/10.3390/plants13020183
]Search in Google Scholar
[
R Core Team., 2024. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
]Search in Google Scholar
[
Reekie, E.G., Bazzaz, F.A., 2005. Reproductive allocation in plants. Burlington, USA: Elsevier Academic Press. 264 p.
]Search in Google Scholar
[
Rojas-Sandoval, J., 2022. Melia azedarach (Chinaberry). CABI International, CABI Compendium, cabicompendium. 33144. DOI:10.1079/cabicompendium.33144, https://www.cabidigitallibrary.org/doi/abs/10.1079/cabicompendium.33144
]Search in Google Scholar
[
Saini, H.K., Dhindsa, M.S., Toor, H.S., 1994. Food of the Rose-ringed Parakeet Psittacula krameri: a quantitative study. Journal of Bombay Natural History Society, 91 (1): 96–103.
]Search in Google Scholar
[
Sandhu, P.S., Dhindsa, M.S., 1982. Damage by Rose-ringed Parakeet and some other animal pests to almond at Ludhiana, Punjab. Indian Journal of Agricultural Sciences, 52 (11): 779–781.
]Search in Google Scholar
[
Schaefer, H.M., Schmidt, V., Winkler, H., 2003. Testing the defence trade-off hypothesis: how contents of nutrients and secondary compounds affect fruit removal. Oikos, 102: 318–328. https://doi.org/10.1034/j.1600-0706.2003.11796.x
]Search in Google Scholar
[
Schmidt, G.H., Ahmed, A.A.I., Breuer, M., 1997. Effect of Melia azedarach extract on larval development and reproduction parameters of Spodoptera littoralis (Boisd.) and Agrotis ipsilon (Hufn.) (Lep., Noctuidae) Anz. Schädlingskd. Pflanzenschutz Umweltschutz, 70: 4–12. https://doi.org/10.1007/BF02009609
]Search in Google Scholar
[
Schooler, S.L., Johnson, M.D., Njoroge, P., Bean, W.T., 2020. Shade trees preserve avian insectivore biodiversity on coffee farms in a warming climate. Ecology and Evolution, 10: 12960–12972. https://doi.org/10.1002/ece3.6879
]Search in Google Scholar
[
Sharma, D., Paul, Y., 2013. Preliminary and pharmacological profile of Melia azedarach L.: an overview. Journal Applied Pharmaceutical Science, 3 (12): 133–138. DOI: 10.7324/JAPS.2013.31224
]Search in Google Scholar
[
Snook, L.K., Cámara-Cabrales, L., Kelty, M.J., 2005. Six years of fruit production by mahogany trees (Swietenia macrophylla King): patterns of variation and implications for sustainability. Forest Ecology and Management, 206 (1–3): 221–235. https://doi.org/10.1016/j.foreco.2004.11.003
]Search in Google Scholar
[
Solís, S., Lobo, J., Grimaldo, M., 2009. Phenology and recruitment of Caryocar costaricense (Caryocaraceae), an endemic tree species of Southern Central America. Revista de Biología Tropical, 57: 771–780. [cit. 2024-08-05]. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442009000300025&lng=en&tlng=en
]Search in Google Scholar
[
Somanathan, H., Borges, R.M., 2000. Influence of exploitation on population structure, spatial distribution and reproductive success of dioecious species in a fragmented cloud forest in India. Biological Conservation, 94: 243–256. https://doi.org/10.1016/S0006-3207(99)00170-6
]Search in Google Scholar
[
Suzuki, M., Umeki, K., Orman, O., Shibata, M., Tanaka, H., Iida, S., Nakashizuka, T., Masaki, T., 2019. When and why do trees begin to decrease their resource allocation to apical growth? The importance of the reproductive on-019-04477-y
]Search in Google Scholar
[
Terborgh, J., Nunez-Iturri, G., Pitman, N.C.A., Valverde, FHC., Paine, C.E.T., 2008. Tree recruitment in an empty forest. Ecology, 89: 1757–1768. https://doi.org/10.1890/07-0479.1
]Search in Google Scholar
[
Traveset, A., 1998. Effect of seed passage through vertebrate frugivores’ gut on germination: a review. Perspective in Plant Ecology, Evolution and Systematics, 1 (2): 151–190. https://doi.org/10.1078/1433-8319-00057
]Search in Google Scholar
[
Traveset, A., Riera, N., Mas, R.E., 2001. Passage through bird guts causes interspecific differences in seed germination characteristics. Functional Ecology, 15: 669–675. https://doi.org/10.1046/j.0269-8463.2001.00561.x
]Search in Google Scholar
[
Voigt, F.A., Farwig, N., Johnson, S.D., 2011. Interactions between the invasive tree Melia azedarach (Meliaceae) and native frugivores in South Africa. Journal of Tropical Ecology, 27: 355–363. DOI: 10.1017/S0266467410000702
]Search in Google Scholar
[
Yoshikawa, T., Kikuzawa, K., 2009. Pre-dispersal seed predation by a granivorous bird, the masked Grosbeak (Eophona personata), in two bird-dispersed Ulmaceae species. Journal of Ecology and Environment, 32 (3): 137–143. https://doi.org/10.5141/JEFB.2009.32.3.137
]Search in Google Scholar
[
Waggy, M.A., 2009. Melia azedarach. Fire Effects Information System. USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory.
]Search in Google Scholar
[
Wenk, E.H., Abramowics, K., Westoby, M., Falster, D.S., 2018. Investment in reproduction for 14 iteroparous perennials is large and associated with other life-history and functional traits. Journal of Ecology, 106: 1338–1348. https://doi.org/10.1111/1365-2745.12974
]Search in Google Scholar
[
Wenk, E.H., Falster, D.S., 2015. Quantifying and understanding reproductive allocation schedules in plants. Ecology and Evolution, 5: 5521–5538. https://doi.org/10.1002/ece3.1802C
]Search in Google Scholar
[
Wenny, D.G., 2001. Advantages of seed dispersal: A re-evaluation of directed dispersal. Evolutionary Ecology Research, 3 (1): 51–74.
]Search in Google Scholar
[
Wenny, D.G., Levey, D.J., 1998. Directed seed dispersal by bellbirds in a tropical cloud forest. Proceedings of the National Academy of Sciences USA, 95: 6204–6207. https://doi.org/10.1073/pnas.95.11.6204
]Search in Google Scholar
[
Westoby, M., 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199: 213–227. https://doi.org/10.1023/A:1004327224729
]Search in Google Scholar
[
Wheelwright, N.T., 1985. Fruit size, gape width, and the diets of fruit-eating birds. Ecology, 66: 808–818. https://doi.org/10.2307/1940542
]Search in Google Scholar
[
Willson, M.F., Irvine, A.K., Walsh, N.G., 1989. Vertebrate dispersal syndromes in some Australian and New Zealand plant communities, with geographic comparisons. Biotropica, 21: 133–147. https://doi.org/10.2307/2388704
]Search in Google Scholar
[
Wright, S.J., Carrasco, C., Calderón, O., Paton, S., 1999. The El Niño southern oscillation,variable fruit production, and famine in a tropical forest. Ecology, 80: 1632–1647. https://doi.org/10.1890/0012-9658(1999)080[1632:TENOSO]2.0.CO;2
]Search in Google Scholar