Otwarty dostęp

Effect of tree size attributes on fruit production and animal-mediated seed dispersal web in Melia azedarach L. (Chinaberry) in north-west Himalaya, India

, , , ,  oraz   
28 sty 2025

Zacytuj
Pobierz okładkę

Andersen, A.N., 1989. How important is seed predation to recruitment in stable populations of long-lived perennials? Oecologia, 81: 310–315. https://doi.org/10.1007/BF00377076 Search in Google Scholar

Augspurger, C.K., Kelly, C.K., 1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia, 61: 211–217. https://doi.org/10.1007/BF00396763 Search in Google Scholar

Azad, M.S., Musa, Z.A., Matin, A., 2010. Effect of pre-sowing treatments on seed germination of Melia azedarach. Journal of Forestry Research, 21(2): 193−196. https://doi.org/10.1007/s11676-010-0031-1 Search in Google Scholar

Badalamenti, E., Cusimano, D., La Mantia, T., Pasta, S., 2013. The recent spread of the invasive woody alien plant Melia azedarach L. (Meliaceae) in Sicily. Il Naturalista Siciliano, 4 (37): 605–613. [cit. 2024-08-19]. https://hdl.handle.net/10447/94518 Search in Google Scholar

Barnea, A., Yom-Tov, Y., Friedman, J., 1991. Does ingestion by birds affect seed germination? Functional Ecology, 394–402. https://doi.org/10.2307/2389811 Search in Google Scholar

Bartczak, M., Lisiecka, J., Knaflewski, M., 2010. Correla tion between selected parameters of planting material and strawberry yield. Folia Horticulturae, 22: 9–12. DOI: 10.2478/fhort-2013-0144 Search in Google Scholar

Batcher, M.S., 2000. Element stewardship abstract for Melia azedarach. Arlington, Virginia: The Natural Conservancy. 7 p. Search in Google Scholar

Bazzaz, F.A., Chiariello, N.R., Coley, P.D., Pitelka, L.F., 1987. Allocating resources to reproduction and defense. BioScience, 37(1): 58–67. https://doi.org/10.2307/1310178 Search in Google Scholar

Bello, C., Galetti, M., Montan, D., Pizo, M.A., Mariguela, T.C., Culot, L., Bufalo, F., Labecca, F., Pedrosa, F., Constantini, R., Emer, C., Silva, W.R., da Silva, F.R., Ovaskainen, O., Jordano, P., 2017. Atlantic frugivory: a plant-frugivore interaction data set for the Atlantic Forest. Ecology, 98 (6): 1729. https://doi.org/10.1002/ecy.1818 Search in Google Scholar

Botha, C.J., Penrith, M.L., 2009. Potential plant poisoning in dogs and cats in southern Africa. Journal of the South African Veterinary Association, 80: 63–74. [cit. 2024-08-07]. https://hdl.handle.net/10520/EJC99818 Search in Google Scholar

Burns, K.C., 2013. What causes size coupling in fruit–frugivore interaction webs? Ecology, 94: 295–300. https://doi.org/10.1890/12-1161.1 Search in Google Scholar

Carbone, M.S., Czimczik, C.I., Keenan, T.F., Murakami, P.F., Pederson, N., Schaberg, P.G., Richardson, A.D., 2013. Age, allocation and availability of non-structural carbon in mature red maple trees. The New Phytologist, 200: 1145–1155. https://doi.org/10.1111/nph.12448 Search in Google Scholar

Champion, H.G., Seth, S.K., 1968. A revised classification of forest types in India. New Delhi: Manager of Publications, Government of India. 404 p. Search in Google Scholar

Chapman, C.A., Chapman, L.J., Wangham, R., Hunt, K., Gebo, D., Gardner, L., 1992. Estimators of fruit abundance of tropical trees. Biotropica, 24: 527–531. https://doi.org/10.2307/2389015 Search in Google Scholar

Chauhan, P.S., Manhas, R.K., Bhandari, D., Negi, J.D.S., 2004. Carbon stock assessment in old growth Pinus rox burghii Spreng. plantation of Forest Research Institute, New Forest, Dehra Dun, India. Indian Journal of Forestry, 27 (1): 45–49. DOI: 10.54207/bsmps1000-2004-7QLM25 Search in Google Scholar

Chen, J., Deng, X.B., Bai, Z.L., Yang, O., Chen, G.Q., Liu, Y., Liu, Z.Q., 2001. Fruit characteristics and Muntiacus muntijak vaginalis (Muntjac) visits to individual plants of Choerospondias axillaris. Biotropica, 33: 718–722. https://doi.org/10.1646/0006-3606(2001)033[0718:FCAMMV]2.0.CO;2 Search in Google Scholar

Crawley, M.J., 1992. Seed predators and plant population dynamics. In Fenner, M. (ed.). Seeds, the ecology of regeneration in plant communities. Wallingford: CAB International, p. 157–191. Search in Google Scholar

Datta, A., 1998. Hornbill abundance in unlogged forest, selectively logged forest and a forest plantation in Arunachal Pradesh, India. Oryx, 32 (4): 285–294. https://doi.org/10.1046/j.1365-3008.1998.d01-58.x Search in Google Scholar

De Steven, D., Wright, S.J., 2002. Consequences of variable reproduction for seedling recruitment in three neo-tropical tree species. Ecology, 83: 2315–2327. https://doi.org/10.1890/0012-9658(2002)083[2315:COVRFS]2.0.CO;2 Search in Google Scholar

Dirr, M. A., Heuser, C.W., 1987. The reference manual of woody plant propagation. Athens, GA: Varsity Press. 239 p. Search in Google Scholar

Dlamini, P., Zachariades, C., Downs, C.T., 2018. The effect of frugivorous birds on seed dispersal and germination of the invasive Brazilian pepper tree (Schinus terebinthifolius) and Indian laurel (Litsea glutinosa). South African Journal of Botany, 114: 61–68. https://doi.org/10.1016/j.sajb.2017.10.009 Search in Google Scholar

García-Rodríguez, A., Albrecht, J., Farwig, N., Frydryszak, D., Parres, A., Schabo, D.G., Selvaa, N., 2022. Functional complementarity of seed dispersal services provided by birds and mammals in an alpine ecosystem. Journal of Ecology, 110: 232–247. https://doi.org/10.1111/1365-2745.13799 Search in Google Scholar

Genes, L., Dirzo, R., 2022. Restoration of plant-animal interactions in terrestrial ecosystems. Biological Conservation, 265: 109393. https://doi.org/10.1016/j.biocon.2021.109393 Search in Google Scholar

Green, R.J., 1993. Avian seed dispersal in and near subtropical rainforests. Wildlife Research, 20: 535–557. https://doi.org/10.1071/WR9930535 Search in Google Scholar

Greene, D.F., Johnson, E.A., 1994. Estimating the mean annual seed production of trees. Ecology, 75 (3): 642–647. https://doi.org/10.2307/1941722 Search in Google Scholar

Han, Q., Kabeya, D., Iio, A., Kakubari, Y., 2008. Masting in Fagus crenata and its influence on the nitrogen content and dry mass of winter buds. Tree Physiology, 28 (8): 1269–1276. https://doi.org/10.1093/treephys/28.8.1269 Search in Google Scholar

Howe, H.F., 1980. Monkey dispersal and waste of a neotropical fruit. Ecology, 61 (4): 944–959. https://doi.org/10.2307/1936763 Search in Google Scholar

Howe, H.F., Smallwood, J., 1982. Ecology of seed dispersal. Annual Review of Ecology and Systematics, 13: 201–228. http://www.jstor.org/stable/2097067 Search in Google Scholar

Huang, R.C., Tadera, K., Yagi, F., Minami, Y., Okamura, H., Iwagawat, T., Nakatani, M., 1996. Limonoids from Melia azedarach. Phytochemistry, 43: 581–583. https://doi.org/10.1016/0031-9422(96)00353-6 Search in Google Scholar

Hulme, P.E., Benkman, C.W., 2002. Granivory. In Herrera, C., Pellmyr, O. (eds). Plant-animal interactions: an evolutionary approach. New York: Blackwell Scientific Publications. 132–154. Search in Google Scholar

Ichie, T., Nakagawa, M., 2013. Dynamics of mineral nutrient storage for mast reproduction in the tropical emergent tree Dryobalanops aromatica. Ecological Research, 28 (2): 151–158. https://doi.org/10.1007/s11284-011-0836-1 Search in Google Scholar

Janzen, D.H., 1970. Herbivores and number of tree species in tropical forests. American Naturalist, 104: 501–28. https://doi.org/10.1086/282687 Search in Google Scholar

Jennings, S., Baima, A.M.V., 2005. The influence of population and forest structure on fruit production in mahogany (Swietenia macrophylla King) and their consequences for sustainable management. International Forestry Review, 7: 363–369. https://doi.org/10.1505/ifor.2005.7.4.363 Search in Google Scholar

Johnson, C., Raiford, T., Whitley, K., 2005. Initial crown diameter of transplants influences marketable yield components of two strawberry cultivars in annual hill production system. International Journal of Fruit Science, 5: 23–29. https://doi.org/10.1300/J492v05n04_03 Search in Google Scholar

Jones, F.A., Comita, L.S., 2008. Neighbourhood density and genetic relatedness interact to determine fruit set and abortion rates in a continuous tropical tree population. Proceedings of the Royal Society of London, B, Biological Sciences, 275: 2759–2767. https://doi.org/10.1098/rspb.2008.0894 Search in Google Scholar

Jordano, P., 1983. Fig-seed predation and dispersal by birds. Biotropica, 15: 38–41. https://doi.org/10.2307/2387996 Search in Google Scholar

Jordano, P., Schupp, E.W., 2000. Seed disperser effectiveness: the quantity component and patterns of seed rain for Prunus mahaleb. Ecological Monographs, 70: 591–615. https://doi.org/10.1890/0012-9615(2000)070[0591:SDETQC]2.0.CO;2 Search in Google Scholar

Kainer, K.A., Wadt, L.H.O., Staudhammer, C.L., 2007. Explaining variation in Brazil nut fruit production. Forest Ecology and Management, 250: 244–255. https://doi.org/10.1016/j.foreco.2007.05.024 Search in Google Scholar

Kanwal, Q., Hussain, I., Siddiqui, L.H., Javaid, A., 2011. Antimicrobial activity screening of isolated flavonoids from Azadirachta indica leaves. Journal of the Serbian Chemical Society, 76 (3): 375–384. https://doi.org/10.2298/JSC100406027K Search in Google Scholar

Keith, S., Urban, E.K., Fry, C.H., 1992. The birds of Africa. Volume IV. London: Academic Press Limited. 609 p. Khaiper, M., Dhanda, S.K., Ahlawat, K.S., Poonia, P.K., Search in Google Scholar

Kumar, A., Verma, P., Chugh, R., Jangra, M., 2023. Unlocking the growth potential of Melia azedarach seedlings: the synergistic impact of Glomus mosseae and pre-sowing treatments. In Biological ForumAn International Journal, 15 (8): 371–377. DOI: 10.13140/RG.2.2.14455.39843 Search in Google Scholar

Khan, A.V., 2002. Ethnobotanical studies on plants with medicinal and anti-bacterial properties. PhD thesis. Aligarh Muslim University, Aligarh. 293 p. Search in Google Scholar

Khan, A.V., Ahmed, Q.U., Mir, M.R., Shukla, I. Khan, A.A., 2011. Antibacterial efficacy of the seed extracts of Melia azedarach against some hospital isolated human pathogenic bacterial strains. Asian Pacific Journal of Tropical Biomedicine, 1 (6): 452–455. DOI: 10.1016/S2221-1691(11) 60099-3 Search in Google Scholar

Khanduri, V.P., 2022. Birds visiting flowers of Erythrina suberosa: their abundance, frequency of visits and role as pollinators in a sub-tropical montane forest of Garhwal Himalaya. Polish Journal of Ecology, 70 (2-3): 117–127. https://doi.org/10.3161/15052249PJE2020.70.2.005 Search in Google Scholar

Khanduri, V.P., 2023. Pollen limitation failing reproductive success in selected animal pollinated trees of tropical moist deciduous forest of north-eastern hill region, India. Hacquetia, 221: 117–129. https://doi.org/10.2478/hacq-2022-0014 Search in Google Scholar

Khanduri, V.P., Sukumaran, A., Sharma, C.M., 2019. Male skewed sex ratio in Myricaesculenta: a dioecious tree species. Trees, 33 (4): 1157–1165. https://doi.org/10.1007/s00468-019-01850-5 Search in Google Scholar

Klimas, C.A., Kainer, K.A., Wadt, L.H., Staudhammer, C.L., Rigamonte-Azevedo, V., Freire Correia, M., da Silva Lima, L.M., 2012. Control of Carapa guianensis phenology and seed production at multiple scales: a five-year study exploring the influences of tree attributes, habitat heterogeneity and climate cues. Journal of Tropical Ecology, 28: 105–118. DOI: 10.1017/S0266467411000630 Search in Google Scholar

Kohyama, T., Suzuki, E., Partomihardjo, T., Yamada, T., Kubo, T., 2003. Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. Journal of Ecology, 91: 797–806. https://doi.org/10.1046/j.1365-2745.2003.00810.x Search in Google Scholar

Korine, C., Izhaki, I., Arad, Z., 1999. Is the Egyptian fruit-bat Rousettus aegyptiacus a pest in Israel? An analysis of the bat’s diet and implications for its conservation. Biological Conservation, 88: 301–306. https://doi.org/10.1016/S0006-3207(98)00126-8 Search in Google Scholar

Levine, J.M., Murrell, D., 2003. Community-level consequences of seed dispersal patterns. Annual Review of Ecology, Evolution, and Systematics, 34: 549–574. https://doi.org/10.1146/annurev.ecolsys.34.011802.132400 Search in Google Scholar

Mabberley, D.J., 1984. A monograph of Melia in Asia and the Pacific. The history of white cedar and persian lilac. Gardens’ Bulletin Singapore, 37: 49–64. Search in Google Scholar

Malhi, C.S., Brar, S.S., 1987. Damage to Ber (Zizyphus mauritiana Umran) by Rose-ringed Parakeet at Ludhiana. Indian Journal of Forestry, 8: 290–292. Search in Google Scholar

Minor, D.M., Kobe, R.K., 2017. Masting synchrony in northern hardwood forests: super producers govern population fruit production. Journal of Ecology, 105 (4): 987–998. https://doi.org/10.1111/1365-2745.12729 Search in Google Scholar

Minor, D.M., Kobe, R.K., 2019. Fruit production is influenced by tree size and size-asymmetric crowding in a wet tropical forest. Ecology and Evolution, 9 (3): 1458–1472. https://doi.org/10.1002/ece3.4867 Search in Google Scholar

Mittelbach, G.G., Gross, K.L., 1984. Experimental studies of seed predation in old-fields. Oecologia, 65: 7–13. https://doi.org/10.1007/BF00384455 Search in Google Scholar

Moore, P.D., 2001. The guts of seed dispersal. Nature, 414 (6862): 406–407. https://doi.org/10.1038/35106677 Search in Google Scholar

Nabe-Nielsen, J., Kollmann, J., Peña-Claros, M., 2009. Effects of liana load, tree diameter and distances between conspecifics on seed production in tropical timber trees. Forest Ecology and Management, 257: 987–993. https://doi.org/10.1016/j.foreco.2008.10.033 Search in Google Scholar

Obeso, J.R., 2002. The costs of reproduction in plants. New Phytologist, 155: 321–348. https://doi.org/10.1046/j.1469-8137.2002.00477.x Search in Google Scholar

Okimat, J.P., Babweteera, F., Ehbrecht, M., 2024. Intra-specific variation in fruit production of African mahogany (Khaya anthotheca) in a semi-deciduous East African rainforest. African Journal of Ecology, 62 (1): e13224. https://doi.org/10.1111/aje.13224 Search in Google Scholar

Osuri, A.M., Ratnam, J., Varma, V., Alvarez-Loayza, P., Hurtado Astaiza, J., Bradford, M., et al., 2016. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nature Communications, 7: 11351. https://doi.org/10.1038/ncomms11351 Search in Google Scholar

Owens, J.N., 1995. Constraints to seed production: temperate and tropical forest trees. Tree Physiology, 15 (7-8): 477–484. https://doi.org/10.1093/treephys/15.7-8.477 Search in Google Scholar

Peres, C., Emilio, T., Schietti, J., Desmoulière, S., Levi, T., 2016. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America, 113: 892–897. https://doi.org/10.1073/pnas.1516525113 Search in Google Scholar

Pizo, M.A., 1997. Seed dispersal and predation in two populations of Cabralea canjerana (Meliaceae) in the Atlantic Forest of Southeastern Brazil. Journal of Tropical Ecology, 13: 559–577. DOI: 10.1017/S0266467400010713 Search in Google Scholar

Pradhan, P., Sukumaran, A., Khanduri, V.P., Singh, B., Rawat, D., Riyal, M.K., Kumar, M., Pinto, M.M.S.C., 2024. Effect of crown layers on reproductive effort and success in andromonoecious Aesculus indica (Wall. ex Camb.) Hook (Sapindaceae) in a temperate forest of Garhwal Himalaya. Plants, 13(2): 183. https://doi.org/10.3390/plants13020183 Search in Google Scholar

R Core Team., 2024. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Search in Google Scholar

Reekie, E.G., Bazzaz, F.A., 2005. Reproductive allocation in plants. Burlington, USA: Elsevier Academic Press. 264 p. Search in Google Scholar

Rojas-Sandoval, J., 2022. Melia azedarach (Chinaberry). CABI International, CABI Compendium, cabicompendium. 33144. DOI:10.1079/cabicompendium.33144, https://www.cabidigitallibrary.org/doi/abs/10.1079/cabicompendium.33144 Search in Google Scholar

Saini, H.K., Dhindsa, M.S., Toor, H.S., 1994. Food of the Rose-ringed Parakeet Psittacula krameri: a quantitative study. Journal of Bombay Natural History Society, 91 (1): 96–103. Search in Google Scholar

Sandhu, P.S., Dhindsa, M.S., 1982. Damage by Rose-ringed Parakeet and some other animal pests to almond at Ludhiana, Punjab. Indian Journal of Agricultural Sciences, 52 (11): 779–781. Search in Google Scholar

Schaefer, H.M., Schmidt, V., Winkler, H., 2003. Testing the defence trade-off hypothesis: how contents of nutrients and secondary compounds affect fruit removal. Oikos, 102: 318–328. https://doi.org/10.1034/j.1600-0706.2003.11796.x Search in Google Scholar

Schmidt, G.H., Ahmed, A.A.I., Breuer, M., 1997. Effect of Melia azedarach extract on larval development and reproduction parameters of Spodoptera littoralis (Boisd.) and Agrotis ipsilon (Hufn.) (Lep., Noctuidae) Anz. Schädlingskd. Pflanzenschutz Umweltschutz, 70: 4–12. https://doi.org/10.1007/BF02009609 Search in Google Scholar

Schooler, S.L., Johnson, M.D., Njoroge, P., Bean, W.T., 2020. Shade trees preserve avian insectivore biodiversity on coffee farms in a warming climate. Ecology and Evolution, 10: 12960–12972. https://doi.org/10.1002/ece3.6879 Search in Google Scholar

Sharma, D., Paul, Y., 2013. Preliminary and pharmacological profile of Melia azedarach L.: an overview. Journal Applied Pharmaceutical Science, 3 (12): 133–138. DOI: 10.7324/JAPS.2013.31224 Search in Google Scholar

Snook, L.K., Cámara-Cabrales, L., Kelty, M.J., 2005. Six years of fruit production by mahogany trees (Swietenia macrophylla King): patterns of variation and implications for sustainability. Forest Ecology and Management, 206 (1–3): 221–235. https://doi.org/10.1016/j.foreco.2004.11.003 Search in Google Scholar

Solís, S., Lobo, J., Grimaldo, M., 2009. Phenology and recruitment of Caryocar costaricense (Caryocaraceae), an endemic tree species of Southern Central America. Revista de Biología Tropical, 57: 771–780. [cit. 2024-08-05]. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442009000300025&lng=en&tlng=en Search in Google Scholar

Somanathan, H., Borges, R.M., 2000. Influence of exploitation on population structure, spatial distribution and reproductive success of dioecious species in a fragmented cloud forest in India. Biological Conservation, 94: 243–256. https://doi.org/10.1016/S0006-3207(99)00170-6 Search in Google Scholar

Suzuki, M., Umeki, K., Orman, O., Shibata, M., Tanaka, H., Iida, S., Nakashizuka, T., Masaki, T., 2019. When and why do trees begin to decrease their resource allocation to apical growth? The importance of the reproductive on-019-04477-y Search in Google Scholar

Terborgh, J., Nunez-Iturri, G., Pitman, N.C.A., Valverde, FHC., Paine, C.E.T., 2008. Tree recruitment in an empty forest. Ecology, 89: 1757–1768. https://doi.org/10.1890/07-0479.1 Search in Google Scholar

Traveset, A., 1998. Effect of seed passage through vertebrate frugivores’ gut on germination: a review. Perspective in Plant Ecology, Evolution and Systematics, 1 (2): 151–190. https://doi.org/10.1078/1433-8319-00057 Search in Google Scholar

Traveset, A., Riera, N., Mas, R.E., 2001. Passage through bird guts causes interspecific differences in seed germination characteristics. Functional Ecology, 15: 669–675. https://doi.org/10.1046/j.0269-8463.2001.00561.x Search in Google Scholar

Voigt, F.A., Farwig, N., Johnson, S.D., 2011. Interactions between the invasive tree Melia azedarach (Meliaceae) and native frugivores in South Africa. Journal of Tropical Ecology, 27: 355–363. DOI: 10.1017/S0266467410000702 Search in Google Scholar

Yoshikawa, T., Kikuzawa, K., 2009. Pre-dispersal seed predation by a granivorous bird, the masked Grosbeak (Eophona personata), in two bird-dispersed Ulmaceae species. Journal of Ecology and Environment, 32 (3): 137–143. https://doi.org/10.5141/JEFB.2009.32.3.137 Search in Google Scholar

Waggy, M.A., 2009. Melia azedarach. Fire Effects Information System. USDA Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. Search in Google Scholar

Wenk, E.H., Abramowics, K., Westoby, M., Falster, D.S., 2018. Investment in reproduction for 14 iteroparous perennials is large and associated with other life-history and functional traits. Journal of Ecology, 106: 1338–1348. https://doi.org/10.1111/1365-2745.12974 Search in Google Scholar

Wenk, E.H., Falster, D.S., 2015. Quantifying and understanding reproductive allocation schedules in plants. Ecology and Evolution, 5: 5521–5538. https://doi.org/10.1002/ece3.1802C Search in Google Scholar

Wenny, D.G., 2001. Advantages of seed dispersal: A re-evaluation of directed dispersal. Evolutionary Ecology Research, 3 (1): 51–74. Search in Google Scholar

Wenny, D.G., Levey, D.J., 1998. Directed seed dispersal by bellbirds in a tropical cloud forest. Proceedings of the National Academy of Sciences USA, 95: 6204–6207. https://doi.org/10.1073/pnas.95.11.6204 Search in Google Scholar

Westoby, M., 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199: 213–227. https://doi.org/10.1023/A:1004327224729 Search in Google Scholar

Wheelwright, N.T., 1985. Fruit size, gape width, and the diets of fruit-eating birds. Ecology, 66: 808–818. https://doi.org/10.2307/1940542 Search in Google Scholar

Willson, M.F., Irvine, A.K., Walsh, N.G., 1989. Vertebrate dispersal syndromes in some Australian and New Zealand plant communities, with geographic comparisons. Biotropica, 21: 133–147. https://doi.org/10.2307/2388704 Search in Google Scholar

Wright, S.J., Carrasco, C., Calderón, O., Paton, S., 1999. The El Niño southern oscillation,variable fruit production, and famine in a tropical forest. Ecology, 80: 1632–1647. https://doi.org/10.1890/0012-9658(1999)080[1632:TENOSO]2.0.CO;2 Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Nauki biologiczne, Nauka o roślinach, Zoologia, Ekologia, Nauki biologiczne, inne