Otwarty dostęp

A test battery approach for ecotoxicological evaluation of disinfectants prepared on the basis of sodium hypochlorite


Zacytuj

Amin, M.M., Hashemi, H., Bovini, A.M., Hung, Y.T., 2013. A review on wastewater disinfection. International Journal of Environmental Health Engineering, 2: 22–30. DOI: 10.4103/2277-9183.113209 Search in Google Scholar

Añasco, N.C., Koyama, J., Imai, S., Nakamura, K., 2008. Toxicity of residual chlorines from hypochlorite-treated seawater to marine amphipod Hyale barbicornis and estuarine fish Oryzias javanicus. Water, Air, & Soil Pollution, 195: 129–136. https://doi.org/10.1007/s11270-008-9732-x Search in Google Scholar

Anonymus, 1992. NTP Toxicology and carcinogenesis studies of chlorinated water (CAS NOS 7782-50-5 and 7681-52-9) and chloraminated water (CAS No. 10599-90-3) (Deionized and charcoal-filtered) in F344/N rats and B6C3F1 mice (drinking water studies). National Toxicology Program Technical Report Series, 392. U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health, National Toxicology Program, Research Triangle Park, NC. 466 p. Search in Google Scholar

Anonymus,, 2015. Hasa 12.5% sodium hypochlorite solution. Safety Data Sheet (SDS), No. 106. Search in Google Scholar

Arrate, J.A., Rodriguez, P., Martinez-Madrid, M., 2004. Tubifex tubifex chronic toxicity test using artificial sediment: methodological issues. Limnetica, 23: 25–36. [cit. 2019-10-26]. https://pdfs.semanticscholarorg/8d95/465692597172b2d3d5f3d94f34bb3d5eb504.pdf Search in Google Scholar

ASTM E1706-05, 2010. Standard test method for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates. ASTM International, West Conshohocken, PA. Search in Google Scholar

Bayo, J., Angosto, J.M., Gómez-López, M.D., Oleaga, I., García, C., 2009a. Toxicity assessment of chlorinated secondary effluents by the Vibrio fischeri bioluminescence assay. In Brebbia, C.A. (ed.). Environmental health risk. Southampton, Boston: WIT Press, p. 329–340. Search in Google Scholar

Bayo, J., Angosto, J.M., Gómez-López, M.D., 2009b. Ecotoxicological screening of reclaimed disinfected wastewater by Vibrio fischeri bioassay after a chlorination– dechlorination process. Journal of Hazardous Materials, 172: 166–171. DOI:10.1016/j.jhazmat.2009.06.157 Search in Google Scholar

Berninger da Costa, J., Rodgher, S., Daniel, L.A., Espíndole, E.L.G., 2014. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation. Ecotoxicology, 23: 1803–1813. https://doi.org/10.1007/s10646-014-1346-z Search in Google Scholar

Bilous, O., Barinova, S., Klochenko, P., 2012. Phytoplankton communities in ecological assessment of the Southern Bug River upper reaches (Ukraine). Ecohydrology and Hydrobiology, 12: 211–230. https://doi.org/10.1016/S1642-3593(12)70205-7 Search in Google Scholar

Binetti, R., Attias, L., 2009. Sodium hypochlorite. CAS No.: 7681-52-9, EINECS No.: 231-668-3. Summary Risk Assessment Report. Roma, Italy. 47 p. Search in Google Scholar

Bulich, A.A., 1979. Use of luminescent bacteria for determining toxicity in aquatic environments. In Marking, L.L., Kimerle, R.A. (eds). Aquatic toxicology. ASTM STP 667. Philadelphia, PA: American Society for Testing and Materials, p. 98–110. Search in Google Scholar

Davoren, M., Ní Shúilleabháin, S., OHalloran, J., Hartl, M.G.J., Sheehan, D., OBrien, N.M., van Pelt, F.N.A.M., Mothersill, C., 2005. A test battery approach for the ecotoxicological evaluation of estuarine sediments. Ecotoxicology, 14: 741–755. https://doi.org/10.1007/s10646-005-0022-8 Search in Google Scholar

DIN EN ISO, 2009. Water quality – Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminiscent bacteria test) - Part 2: Method using liquid dried bacteria (DIN EN ISO 11348-2:2009-05). Search in Google Scholar

Dobbs, F.C., 2005. Ridding ships’ ballast water of microorganisms. Environmental Science & Technology, 39: 259A–264A. https://doi.org/10.1021/es053300v Search in Google Scholar

Emmanuel, E., Keck, G., Blanchard, J.M., Vermande, P., Perrodin, Y., 2004. Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environment International, 30: 891–900. https://doi.org/10.1016/j.envint.2004.02.004 Search in Google Scholar

Fargašová, A., 2017. Plant stress activated by chlorine from disinfectants prepared on the base of sodium hypochlorite. Nova Biotechnolgica et Chimica, 16: 76–85. https://doi.org/10.1515/nbec-2017-0011 Search in Google Scholar

Ferrão-Filho, A.S., Soares, M.C.S., Magalhaes, V.F., Azevedo, S.M.F.O., 2010. A rapid bioassay for determining saxitoxins using a Daphnia acute toxicity test. Environmental Pollution, 185: 2084–2093. https://doi.org/10.1016/j.envpol.2010.03.007 Search in Google Scholar

Gibbons, J., Laha, S., 1999. Water purification systems: a comparative analysis based on the occurrence of disinfection by-products. Environmental Pollution, 106: 425–428. https://doi.org/10.1016/S0269-7491(99)00097-4 Search in Google Scholar

Hidalgo, E., Bartolome, R., Dominguez, C., 2002. Cytotoxicity mechanisms of sodium hypochlorite in cultured human dermal fibroblasts and its bactericidal effectiveness. Chemico Biological Interactions, 139: 265–282. https://doi.org/10.1016/S0009-2797(02)00003-0 Search in Google Scholar

Hrudey, S.F., 2009. Chlorination disinfection by-products, public health risk tradeoffs and me. Water Research, 43: 2057–2092. https://doi.org/10.1016/j.watres.2009.02.011 Search in Google Scholar

Junli, H., Li, W., Nenqi, R., Li, L.X., Fun, S.R., Guanle, Y., 1997. Disinfection effect of chlorine dioxide on viruses, algae and animal planktons in water. Water Research, 31: 455–460. https://doi.org/10.1016/S0043-1354(96)00276-X Search in Google Scholar

Kim, K., Kim, K.Y., Kim, J.-H., Kang, E.J., Jeong, H.J., Lee, K., 2013. Synergistic effects of elevated carbon dioxide and sodium hypochlorite on survival and impairment of three phytoplankton species. Algae, 28: 173–183. https://doi.org/10.4490/algae.2013.28.2.173 Search in Google Scholar

Leynen, M., Van Den Berckt, T., Aerts, J.M., Castelein, B., Berckmans, D., Ollevier, F., 1999. The use of Tubificidae in a biological early warning system. Environmental Pollution, 105: 151–154. https://doi.org/10.1016/S0269-7491(98)00144-4 Search in Google Scholar

Li, J., Wang, W., Moe, B., Wang, H., Li, X.F., 2015. Chemical and toxicological characterization of halobenzoquinones, an emerging class of disinfection byproducts. Chemical Research in Toxicology, 28: 306–318. https://doi.org/10.1021/tx500494r Search in Google Scholar

López-Galindo, C., Garrido, M.C., Casanueva, J.F., Nebot, E., 2010. Degradation models and ecotoxicity in marine waters of two antifouling compounds: sodium hypochlorite and an alkylamine surfactant. Science of the Total Environment, 408: 1779–1785. https://doi.org/10.1016/j.scitotenv.2010.01.029 Search in Google Scholar

Luttrell, W., 2001. Toxic tips: sodium hypochlorite. ACS Chemical Health & Safety, 8: 24–26. https://doi.org/10.1016/S1074-9098(01)00266-0 Search in Google Scholar

Manning, T.M., Wilson, S.P., Chapman, J.C., 1996. Toxicity of chlorine and other chlorinated compounds to some Australian aquatic organisms. Bulletin of Environmental Contamination and Toxicology, 56: 971–976. https://doi.org/10.1007/s001289900140 Search in Google Scholar

Mohammadi, Z., 2008. Sodium hypochlorite in endodontics: an update review. International Dental Journal, 58: 329–341. https://doi.org/10.1111/j.1875-595X.2008.tb00354.x Search in Google Scholar

OECD, 2004. Daphnia sp. – acute immobilization Test 202. OECD Guidelines for the Testing of Chemicals, Paris. 12 p. Search in Google Scholar

OECD, 2011. Freshwater alga and cyanobacteria, growth inhibition test 201. OECD Guidelines for the Testing of Chemicals, Paris. 25 p. Search in Google Scholar

Parvez, S., Venkataraman, Ch., Mukherji, S., 2006. A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environment International, 32: 265–268. https://doi.org/10.1016/j.envint.2005.08.022 Search in Google Scholar

Pignata, C., Fea, E., Degan, R., Lorenzi, E., De Ceglia, M., Schiliro, T., Gilli, G., 2012. Chlorination in a wastewater treatment plant acute toxicity effects of the effluent and of the recipient water body. Environmental Monitoring and Assessment, 184: 2091–2103. DOI: 10.1007/s10661-011-2102-y Search in Google Scholar

Rajfur, M., Krems, P., Kłos, A., Kozłowski, R., Jóźwiak, M.A., Kříž, J., Waclawek, M., 2016. Application of algae in active biomonitoring of the selected holding reservoirs in Swietokrzyskie province. Ecological Chemistry and Engineering S, 23: 237–247. https://doi.org/10.1515/eces-2016-0016 Search in Google Scholar

Rav-Acha, Ch., Kummel, M., Salamon, I., Adin, A., 1995. The effect of chemical oxidants on effluent constituents for drip irrigation. Water Research, 29: 119–129. https://doi.org/10.1016/0043-1354(94)E0113-K Search in Google Scholar

Repetto, G., 2013. Test batteries in ecotoxicology. Chapter 99. In Férard, J.-F., Blaise, C. (eds). Encyclopedia of aquatic ecotoxicology. Dordrecht, The Netherlands: Springer Publishers, p. 1105–1128. Search in Google Scholar

Sapone, A., Canistro, D., Vivarelli, F., Paolini, M., 2016. Perturbation of xenobiotic metabolism in Dreissena polymorpha model exposed in situ to surface water (Lake Trasimene) purified with various disinfectants. Chemosphere, 144: 548–554. https://doi.org/10.1016/j.chemosphere.2015.09.022 Search in Google Scholar

Singleton, H.J., Bio, R.P., 1989. Ambient water quality criteria for chlorine technical appendix.Vancouver: Ministry of Environment, Province of British Columbia. 114 p. Search in Google Scholar

Sun, X.B., Cui, F.Y., Zhang, J.S., Guo, Z.H., Xu, F., Liu, L.I., 2005. Toxicity and influencing factor of liquid chlorine on chironomid larvae. Huan Jing Ke Xue, 25: 95–99. [cit. 2019-10-26]. https://www.ncbi.nlm.nih.gov/pubmed/18290484. Search in Google Scholar

Ton, S.-S., Chang, S.-H., Hsu, L.-Y., Wang, M.-H., Wang, K.-S., 2012. Evaluation of acute toxicity and teratogenic effects of disinfectants by Daphnia magna embryo assay. Environmental Pollution, 168: 54–61. https://doi.org/10.1016/j.envpol.2012.04.008 Search in Google Scholar

US EPA, 1984. Ambient water quality criteria for chlorine -84. EPA 440/5-84-030, Office of Water Regulations and Standards, Washington DC 20460. 64 p. Search in Google Scholar

US EPA, 1986. Quality criteria for water 1986. EPA 440/5-86-001, Washington, DC. Search in Google Scholar

US EPA, 1991. EPA R.E.D. Facts – sodium and calcium hypochlorite salts. Office of Pesticides and Toxic Substances, Washington, DC. Search in Google Scholar

US EPA, 1994. Chemical summary for chlorine. United States Environmental Protection Agency Offices of pollution prevention and toxics, Cincinnati. Search in Google Scholar

Villanueva, C.M., Cordier, S., Font-Ribera, L., Salas, L.A., Levallois, P., 2015. Overview of disinfection by-products and associated health effects. Current Environmental Health Reports, 2: 107–115. https://doi.org/10.1007/s40572-014-0032-x Search in Google Scholar

Wojtal-Frankiewicz, A., Frankiewicz, P., 2011. The impact of pelagic (Daphnia longispina) and benthic (Dreissena polymorpha) filter feeders on chlorophyll and nutrient concentration. Limnologica, 41: 191–200. https://doi.org/10.1016/j.limno.2010.09.001 Search in Google Scholar

Yang, M., Zhang, X., 2013. Comparative development toxicity of new aromatic halogenated DBPs in chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii. Environmental Science & Technology, 47: 10868–10876. https://doi.org/10.1021/es401841t Search in Google Scholar

Zhai, H., Zhang, X., Zhu, X., Liu, J., Ji, M., 2014. Formation of bromated disinfection byproducts during chloramination of drinking water: New polar species and overall kinetics. Environmental Science & Technology, 48: 2579–2588. https://doi.org/10.1021/es4034765 Search in Google Scholar

eISSN:
1338-7014
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other, Plant Science, Zoology, Ecology