Otwarty dostęp

Role of topography, soil and climate on forest species composition and diversity in the West Usambara Montane Forests of Tanzania


Zacytuj

Báez, S., Fadrique, B., Feeley, K., Homeier, J., 2022. Changes in tree functional composition across topographic gradients and through time in a tropical montane forest. PLoS One, 17 (4): e0263508. https://doi.org/10.1371/journal.pone.0263508 Search in Google Scholar

Baldeck, C.A., Tupayachi, R., Sinca, F., Jaramillo, N., Asner, G.P., 2016. Environmental drivers of tree community turnover in western Amazonian forests. Ecography, 39 (11): 1089–1099. https://doi.org/10.1111/ecog.01575 Search in Google Scholar

Barczyk, M.K., Acosta-Rojas, D.C., Espinosa, C.I., Schleuning, M., Neuschulz, E.L., 2023. Biotic pressures and environmental heterogeneity shape beta-diversity of seedling communities in tropical montane forests. Ecography, 2023 (6): e06538. Search in Google Scholar

Baselga, A., 2013. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods in Ecology and Evolution, 4 (6): 552–557. https://doi.org/10.1111/2041-210X.12029 Search in Google Scholar

Baselga, A., Orme, C.D.L., 2012. betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution, 3 (5): 808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x Search in Google Scholar

Bhatta, K.P., Aryal, A., Baral, H., Khanal, S., Acharya, A.K., Phomphakdy, C., Dorji, R., 2021. Forest structure and composition under contrasting precipitation regimes in the high mountains, western Nepal. Sustainability (Switzerland), 13 (13): 7510. https://doi.org/10.3390/su13137510 Search in Google Scholar

Blanchard, G., Munoz, F., Ibanez, T., Hequet, V., Vandrot, H., Girardi, J., Birnbaum, P., 2019. Regional rainfall and local topography jointly drive tree community assembly in lowland tropical forests of New Caledonia. Journal of Vegetation Science, 30 (5): 845–856. https://doi.org/10.1111/jvs.12781 Search in Google Scholar

Boyle, M.J.W., Bishop, T.R., Luke, S.H., van Breugel, M., Evans, T.A., Pfeifer, M., Fayle, T.M., Hardwick, S.R., Lane-Shaw, R.I., Yusah, K.M., Ashford, I.C.R., Ashford, O.S., Garnett, E., Turner, E.C., Wilkinson, C.L., Chung, A.Y.C., Ewers, R.M., 2021. Localised climate change defines ant communities in human-modified tropical landscapes. Functional Ecology, 35 (5): 1094–1108. https://doi.org/10.1111/1365-2435.13737 Search in Google Scholar

Braganza, K., Karoly, D.J., Arblaster, J.M., 2004. Diurnal temperature range as an index of global climate change during the twentieth century. Geophysical Research Letters, 31 (13): 2–5. https://doi.org/10.1029/2004GL019998 Search in Google Scholar

Brambach, F., Leuschner, C., Tjoa, A., Culmsee, H., 2017. Diversity, endemism, and composition of tropical mountain forest communities in Sulawesi, Indonesia, in relation to elevation and soil properties. Perspectives in Plant Ecology, Evolution and Systematics, 27: 68–79. https://doi.org/10.1016/j.ppees.2017.06.003 Search in Google Scholar

Bunyan, M., Bardhan, S., Singh, A., Jose, S., 2015. Effect of topography on the distribution of tropical montane forest fragments: a predictive modelling approach. Journal of Tropical Forest Science, 27 (1): 30–38. Search in Google Scholar

Dantas de Paula, M., Forrest, M., Langan, L., Bendix, J., Homeier, J., Velescu, A., Wilcke, W., Hickler, T., 2021. Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot. New Phytologist, 232 (2): 551–566. https://doi.org/10.1111/nph.17600 Search in Google Scholar

De Caceres, M., Jansen, F., De Caceres, M.M., 2014. Package “indicspecies.” Indicators, 8 (1): 1–31. Search in Google Scholar

Dimitrov, D., Nogués-Bravo, D., Scharff, N., 2012. Why do tropical mountains support exceptionally high biodiversity? The Eastern Arc Mountains and the drivers of Saintpaulia diversity. PLoS One, 7 (11): e48908. https://doi.org/10.1371/journal.pone.0048908 Search in Google Scholar

Diogo, I.J.S., dos Santos, K., da Costa, I.R., dos Santos, F.A.M., 2021. Effects of topography and climate on Neotropical mountain forests structure in the semiarid region. Applied Vegetation Science, 24 (1): e12527. https://doi.org/10.1111/avsc.12527 Search in Google Scholar

Fahey, T.J., Sherman, R.E., Tanner, E.V.J., 2016. Tropical montane cloud forest: environmental drivers of vegetation structure and ecosystem function. Journal of Tropical Ecology, 32 (5): 355–367. https://doi.org/10.1017/S0266467415000176 Search in Google Scholar

Hai, N.H., Erfanifard, Y., Bui, V.B., Mai, T.H., Petritan, A.M., Petritan, I.C., 2021. Topographic effects on the spatial species associations in diverse heterogeneous tropical evergreen forests. Sustainability (Switzerland), 13 (5): 2468. https://doi.org/10.3390/su13052468 Search in Google Scholar

Haq, S.M., Calixto, E.S., Kumar, M., 2021. Assessing biodiversity and productivity over a small-scale gradient in the protected forests of Indian Western Himalayas. Journal of Sustainable Forestry, 40 (7): 675–694. https://doi.org/10.1080/10549811.2020.1803918 Search in Google Scholar

Hofhansl, F., Chacón-Madrigal, E., Fuchslueger, L., Jenking, D., Morera-Beita, A., Plutzar, C., Silla, F., Andersen, K.M., Buchs, D.M., Dullinger, S., Fiedler, K., Franklin, O., Hietz, P., Huber, W., Quesada, C.A., Rammig, A., Schrodt, F., Vincent, A.G., Weissenhofer, A., Wanek, W., 2020. Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Scientific Reports, 10 (1): 5066. https://doi.org/10.1038/s41598-020-61868-5 Search in Google Scholar

Homeier, J., 2010. The influence of topography on forest structure and regeneration dynamics in an Ecuadorian montane forest. In The tropical mountain forest: patterns and processes in a biodiversity hotspot. Biodiversity and Ecology Series. Akron, Ohio: University of Akron, p. 97–107. Search in Google Scholar

Homeier, J., Leuschner, C., 2021. Factors controlling the productivity of tropical Andean forests: climate and soil are more important than tree diversity. Biogeosciences, 18 (4): 1525–1541. https://doi.org/10.5194/bg-18-1525-2021 Search in Google Scholar

Huang, W., Pohjonen, V., Johansson, S., Nashanda, M., Katigula, M.I.L., Luukkanen, O., 2003. Species diversity, forest structure and species composition in Tanzanian tropical forests. Forest Ecology and Management, 173 (1–3): 11–24. https://doi.org/10.1016/S0378-1127(01)00820-9 Search in Google Scholar

Iwashita, D.K., Litton, C.M., Giardina, C.P., 2013. Coarse woody debris carbon storage across a mean annual temperature gradient in tropical montane wet forest. Forest Ecology and Management, 291: 336–343. https://doi.org/10.1016/j.foreco.2012.11.043 Search in Google Scholar

Jiang, M., Kong, J., Zhang, Z., Hu, J., Qin, Y., Shang, K., Zhao, M., Zhang, J., 2023. Seeing trees from drones: the role of leaf phenology transition in mapping species distribution in species-rich montane forests. Forests, 14 (5): 908. https://doi.org/10.3390/f14050908 Search in Google Scholar

Kindt, R., Kindt, M.R., 2023. Package “BiodiversityR”. Package for community ecology and suitability analysis. The R Journal, 2: 1–12. https://doi.org/http://www.worldagroforestry.org/output/tree-diversity-analysis Search in Google Scholar

Kopecký, M., Čížková, Š., 2010. Using topographic wetness index in vegetation ecology: Does the algorithm matter? Applied Vegetation Science, 13 (4): 450–459. https://doi.org/10.1111/j.1654-109X.2010.01083.x Search in Google Scholar

Lakkana, T., Ashton, M.S., Hooper, E.R., Perera, A., Ediriweera, S., 2002. Tropical montane forest in South Asia: composition, structure, and dieback in relation to soils and topography. Ecosphere, 13 (5): 35–49. https://doi.org/10.1002/ecs2.4049 Search in Google Scholar

Latt, M.M., Park, B.B., 2022. Tree species composition and forest community types along environmental gradients in Htamanthi Wildlife Sanctuary, Myanmar: implications for action prioritization in conservation. Plants, 11 (16): 2180. https://doi.org/10.3390/plants11162180 Search in Google Scholar

Lenth, R., Singmann, H., Love, J., Buerkner, P., Herve, M., 2018. emmeans: estimated marginal means, aka least-squares means. R package version 1.8.6. https://cran.r-project.org/package=emmeans [cited 2023-04-10] Search in Google Scholar

Li, G., Du, S., Wen, Z., 2016. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Scientific Reports, 6 (July): 30009. https://doi.org/10.1038/srep30009 Search in Google Scholar

Li, T., Xiong, Q., Luo, P., Zhang, Y., Gu, X., Lin, B., 2020. Direct and indirect effects of environmental factors, spatial constraints, and functional traits on shaping the plant di versity of montane forests. Ecology and Evolution, 10 (1): 557–568. https://doi.org/10.1002/ece3.5931 Search in Google Scholar

Lippok, D., Beck, S.G., Renison, D., Hensen, I., Apaza, A.E., Schleuning, M., 2014. Topography and edge effects are more important than elevation as drivers of vegetation patterns in a neotropical montane forest. Journal of Vegetation Science, 25 (3): 724–733. https://doi.org/10.1111/jvs.12132 Search in Google Scholar

Lolila, N.J., Shirima, D.D., Mauya, E.W., 2023. Tree species composition along environmental and disturbance gradients in tropical sub-montane forests, Tanzania. PLoS One, 18 (3): e0282528. https://doi.org/10.1371/journal.pone.0282528 Search in Google Scholar

Lovett, J.C., 1996. Elevational and latitudinal changes in tree associations and diversity in the Eastern Arc mountains of Tanzania. Journal of Tropical Ecology, 12 (5): 629–650. https://doi.org/10.1017/S0266467400009846 Search in Google Scholar

Lüdecke, D., Ben-Shachar, M.S., PATIL, I., Makowski, D., 2023. Extracting, computing and exploring the parameters of statistical models using R. Journal of Open Source Software, 5 (53): 2445. https://doi.org/10.21105/joss.02445 Search in Google Scholar

Macek, M., Kopecký, M., Wild, J., 2019. Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests. Landscape Ecology, 34 (11): 2541–2556. https://doi.org/10.1007/s10980-019-00903-x Search in Google Scholar

Mata-Guel, E.O., Soh, M.C.K., Butler, C.W., Morris, R.J., Razgour, O., Peh, K.S.H., 2023. Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biological Reviews, Wiley. https://doi.org/10.1111/brv.12950 Search in Google Scholar

Murphy, S.J., Audino, L.D., Whitacre, J., Eck, J.L., Wenzel, J.W., Queenborough, S.A., Comita, L.S., 2015. Species associations structured by environment and land-use history promote beta-diversity in a temperate forest. Ecology, 96 (3): 705–715. https://doi.org/10.1890/14-0695.1 Search in Google Scholar

Murphy, S.J., Salpeter, K., Comita, L.S., 2016. Higher β-diversity observed for herbs over woody plants is driven by stronger habitat filtering in a tropical understory. Ecology, 97 (8): 2074–2084. https://doi.org/10.1890/15-1801.1 Search in Google Scholar

Muscarella, R., Kolyaie, S., Morton, D.C., Zimmerman, J.K., Uriarte, M., 2020. Effects of topography on tropical forest structure depend on climate context. Journal of Ecology, 108 (1): 145–159. https://doi.org/10.1111/1365-2745.13261 Search in Google Scholar

Nery, E.K., Caddah, M.K., Santos, M.F., Nogueira, A., 2023. The evolution of ecological specialization underlies plant endemism in the Atlantic Forest. Annals of Botany, 1–20. https://doi.org/10.1093/aob/mcad029 Search in Google Scholar

Nettesheim, F.C., Garbin, M.L., Rajão, P.H.M., Araujo, D.S.D., Grelle, C.E.V., 2018. Environment is more relevant than spatial structure as a driver of regional variation in tropical tree community richness and composition. Plant Ecology and Diversity, 11 (1): 27–40. https://doi.org/10.1080/17550874.2018.1473520 Search in Google Scholar

Noguerales, V., Meramveliotakis, E., Castro-Insua, A., Andújar, C., Arribas, P., Creedy, T.J., Overcast, I., Morlon, H., Emerson, B.C., Vogler, A.P., Papadopoulou, A., 2021. Community metabarcoding reveals the relative role of environmental filtering and spatial processes in metacommunity dynamics of soil microarthropods across a mosaic of montane forests. Molecular Ecology, 2: 1–19. https://doi.org/10.1111/mec.16275 Search in Google Scholar

Ntirugulirwa, B., Manishimwe, A., Uddling, J., Wallin, G., 2023. Contrasting growth and mortality responses of different species lead to shifts in tropical montane tree community composition in a warmer climate. Biogeosciences, March, 1–39. https://doi.org/https://doi.org/10.5194/bg-2023-42 Search in Google Scholar

Oksanen, J., Kindt, R., Legendre, P., OHara, B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Wagner, H., 2008. The vegan package. Community Ecology Package, 2 (9): 1–295. Search in Google Scholar

Oldfather, M.F., Ackerly, D.D., 2019. Microclimate and demography interact to shape stable population dynamics across the range of an alpine plant. New Phytologist, 222 (1): 193–205. https://doi.org/10.1111/nph.15565 Search in Google Scholar

Pielou, E.C., 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13 (C): 131–144. https://doi.org/10.1016/0022-5193(66)90013-0 Search in Google Scholar

Preston, F.W., 1962. The canonical distribution of commonness and rarity : Part I. Ecology, 43 (2): 185–215. Search in Google Scholar

Punyasena, S.W., Eshel, G., McElwain, J.C., 2008. The influence of climate on the spatial patterning of Neotropical plant families. Journal of Biogeography, 35 (1): 117–130. https://doi.org/10.1111/j.1365-2699.2007.01773.x Search in Google Scholar

R Core Team, 2022. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://doi.org/http://www.R-project.org/. Search in Google Scholar

Rahman, I.U., Hart, R.E., Ijaz, F., Afzal, A., Iqbal, Z., Calixto, E.S., Abd-Allah, E.F., Alqarawi, A.A., Hashem, A., Al-Arjani, A.B.F., Kausar, R., Haq, S.M., 2022. Environmental variables drive plant species composition and distribution in the moist temperate forests of North- western Himalaya, Pakistan. PLoS One, 17 (2): e0260687. https://doi.org/10.1371/journal.pone.0260687 Search in Google Scholar

Rawat, B., Negi, A.S., 2021. Plant diversity patterns along environmental gradients in Nanda Devi Biosphere Reserve, West Himalaya. Tropical Ecology, 62 (1): 61–70. https://doi.org/10.1007/s42965-020-00122-5 Search in Google Scholar

Rawat, D.S., Tiwari, P., Das, S.K., Tiwari, J.K., 2020. Tree species composition and diversity in montane forests of Garhwal Himalaya in relation to environmental and soil properties. Journal of Mountain Science, 17 (12): 3097–3111. https://doi.org/10.1007/s11629-019-5761-8 Search in Google Scholar

Rodgers, W.A., Homewood, K.M., 1982. Species richness and endemism in the Usambara mountain forests, Tanzania. Biological Journal of the Linnean Society, 18 (3): 197–242. https://doi.org/10.1111/j.1095-8312.1982.tb02037.x Search in Google Scholar

Rubio, A., Gavilán, R.G., Montes, F., Gutiérrez-Girón, A., Díaz-Pines, E., Mezquida, E.T., 2011. Biodiversity measures applied to stand-level management: Can they really be useful? Ecological Indicators, 11 (2): 545–556. https://doi.org/10.1016/j.ecolind.2010.07.011 Search in Google Scholar

Sagar, R., Raghubanshi, A.S., Singh, J.S., 2003. Tree species composition, dispersion and diversity along a disturbance gradient in a dry tropical forest region of India. Forest Ecology and Management, 186 (1–3): 61–71. https://doi.org/10.1016/S0378-1127(03)00235-4 Search in Google Scholar

Salinas, N., Cosio, E.G., Silman, M., Meir, P., Nottingham, A.T., Roman-Cuesta, R.M., Malhi, Y., 2021. Editorial: tropical montane forests in a changing environment. Frontiers in Plant Science, 12 (August): 1–5. https://doi.org/10.3389/fpls.2021.712748 Search in Google Scholar

Shannon, C.E., Weaver, W., 1964. Mathematical theory of communication. International Business, 131. [cited 2023-01-17]. https://pure.mpg.de/rest/items/item_2383164_3/component/file_2383163/content Search in Google Scholar

Sharma, C.M., Mishra, A.K., Tiwari, O.P., Krishan, R., Rana, Y.S., 2017. Effect of altitudinal gradients on forest structure and composition on ridge tops in Garhwal Himalaya. Energy, Ecology and Environment, 2 (6): 404–417. https://doi.org/10.1007/s40974-017-0067-6 Search in Google Scholar

Spracklen, D.V., Righelato, R., 2014. Tropical montane forests are a larger than expected global carbon store. Biogeosciences, 11 (10): 2741–2754. https://doi.org/10.5194/bg-11-2741-2014 Search in Google Scholar

Takyu, M., Aiba, S.-I., Kitayama, K., 2002. Effects of topography on tropical lower montane on Mount Kinabulu, Borneo. Plant Ecology, 159 (1): 35–49. https://link.springer.com/content/pdf/10.1023/A:1015512400074.pdf Search in Google Scholar

Tallents, L.A., Lovett, J.C., Hall, J.B., Hamilton, A.C., 2005. Phylogenetic diversity of forest trees in the Usambara mountains of Tanzania: correlations with altitude. Botanical Journal of the Linnean Society, 149 (2): 217–228. https://doi.org/10.1111/j.1095-8339.2005.00431.x Search in Google Scholar

Thakur, S., Negi, V.S., Dhyani, R., Bhatt, I.D., Yadava, A.K., 2022. Influence of environmental factors on tree species diversity and composition in the Indian western Himalaya. Forest Ecology and Management, 503: 119746. https://doi.org/10.1016/j.foreco.2021.119746 Search in Google Scholar

Tietje, M., Antonelli, A., Baker, W.J., Govaerts, R., Smith, S.A., Eiserhardt, W.L., 2022. Global variation in diversification rate and species richness are unlinked in plants. Proceedings of the National Academy of Sciences, 119 (27): e2120662119. https://doi.org/10.1073/pnas.2120662119 Search in Google Scholar

Trew, B.T., Maclean, I.M.D., 2021. Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Biogeography, 30 (4): 768–783. https://doi.org/10.1111/geb.13272 Search in Google Scholar

Vasconcelos, T., OMeara, B.C., Beaulieu, J.M., 2022. Retiring “cradles” and “museums” of biodiversity. The American Naturalist, 199 (2):194–205. https://doi.org/10.1086/717412 Search in Google Scholar

Veintimilla, D., Ngo Bieng, M.A., Delgado, D., Vilchez-Mendoza, S., Zamora, N., Finegan, B., 2019. Drivers of tropical rainforest composition and alpha diversity patterns over a 2,520 m altitudinal gradient. Ecology and Evolution, 9 (10): 5720–5730. https://doi.org/10.1002/ece3.5155 Search in Google Scholar

Vleminckx, J., Drouet, T., Amani, C., Lisingo, J., Lejoly, J., Hardy, O.J., 2015. Impact of fine-scale edaphic heterogeneity on tree species assembly in a central African rainforest. Journal of Vegetation Science, 26 (1): 134–144. https://doi.org/10.1111/jvs.12209 Search in Google Scholar

Wiegand, T., May, F., Kazmierczak, M., Huth, A., 2017. What drives the spatial distribution and dynamics of local species richness in tropical forest? Proceedings of the Royal Society B, Biological Sciences, 284 (1863): article ID 20171503. https://doi.org/10.1098/rspb.2017.1503 Search in Google Scholar

Yessoufou, K., Daru, B.H., Davies, T.J., 2012. Phylogenetic patterns of extinction risk in the eastern arc ecosystems, an African biodiversity hotspot. PLoS One, 7 (10): e47082. https://doi.org/10.1371/journal.pone.0047082 Search in Google Scholar

Zhang, C., Li, X., Chen, L., Xie, G., Liu, C., Pei, S., 2016. Effects of topographical and edaphic factors on tree community structure and diversity of subtropical mountain forests in the Lower Lancang River Basin. Forests, 7 (10): 222. https://doi.org/10.3390/f7100222 Search in Google Scholar

Zhang, W., Huang, D., Wang, R., Liu, J., Du, N., 2016. Altitudinal patterns of species diversity and phylogenetic diversity across temperate mountain forests of northern China. PLoS One, 11 (7): e0159995. https://doi.org/10.1371/journal.pone.0159995 Search in Google Scholar

Zhao, Z., Hui, G., Yang, A., Zhang, G., Hu, Y., 2022. Assessing tree species diversity in forest ecosystems: a new approach. Frontiers in Ecology and Evolution, 10: 971585. https://doi.org/10.3389/fevo.2022.971585 Search in Google Scholar

eISSN:
1338-7014
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other, Plant Science, Zoology, Ecology