Otwarty dostęp

A comparative assessment between artificial neural network, neuro-fuzzy, and support vector machine models in splash erosion modelling under simulation circumstances


Zacytuj

Abraham, A., Nath, B., 2001. Hybrid intelligent systems design – A review of a decade of research. Technical Report, 5/2000. Gippsland School of Computing and Information Technology, Monash University, Australia. Search in Google Scholar

Akbarzadeh, A., Taghizadeh Mehrjardi, R., Rouhipour, H., Gorji, M., Refah, H.G. 2009. Estimating of soil erosion covered with rolled erosion control systems using rainfall simulator (neuro-fuzzy and artificial neural network approaches). Journal of Applied Sciences Research, 5: 505–514. (In Persian). Search in Google Scholar

Assad, A.A., Gass, S.I. (eds), 2011. Profiles in operations research: Pioneers and innovators. International Series in Operations Research et Management Science, 147. Boston: Springer Science & Business Media. 824 p.10.1007/978-1-4419-6281-2 Search in Google Scholar

Bernard. V., Thomas, J., Abarbanell, J., 1993. How sophisticated is the market in interpreting earnings new? Applied Corporate Finance, 6: 54–63. https://doi.org/10.1111/j.1745-6622.1993.tb00383.x10.1111/j.1745-6622.1993.tb00383.x Search in Google Scholar

Boroghani, M., Hayavi, F., Noor, H., 2012. Affectability of splash erosion by poly-acryl-amide application and rainfall intensity. Soil and Water Research. (4): 159–165. https://doi.org/10.17221/45/2011-SWR10.17221/45/2011-SWR Search in Google Scholar

Boroghani, M., Mirnia, S. K., Vahhabi, J., Ahmadi, S. J., Charkhi, A., 2011. Nanozeolite synthesis and the effect of on the runoff and erosion control under rainfall simulator. Australian Journal of Basic and Applied Sciences, 5 (12): 1156–1164. Search in Google Scholar

Chen, ST., Yu, PS., 2007. Pruning of support vector networks on flood forecasting. Journal of Hydrology, 347: 67–78. https://doi.org/10.1016/j.jhydrol.2007.08.02910.1016/j.jhydrol.2007.08.029 Search in Google Scholar

Ciğizoğlu, HK., Kişi, Ö., 2006. Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology, 317: 221–238. https://doi.org/10.1016/j.jhydrol.2005.05.01910.1016/j.jhydrol.2005.05.019 Search in Google Scholar

Cimen, M., 2008. Estimation of daily-suspended sediments using support vector machines. Hydrological Sciences Journal, 53: 656–666. https://doi.org/10.1623hysj.53.3.65610.1623/hysj.53.3.656 Search in Google Scholar

Demuth, H., Beale, M., 1998. Neural Network Toolbox for Use with MATLAB. User’s Guide. Version 3. Natick: The MathWorks Inc. Search in Google Scholar

Dibike, YB., Velickov, S., Sololatine, D.P., Abbott, MB, 2001. Model induction with support vector machine: introduction and application. Journal of Computing in Civil Engineering, 15: 208–216. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208)10.1061/(ASCE)0887-3801(2001)15:3(208) Search in Google Scholar

Firat, M., Gungor, M., 2010. Monthly total sediment forecasting using adaptive neuro fuzzy inference system. Stochastic Environmental Research and Risk Assessment, 24: 259–273. https://doi.org/10.1007/s00477-009-0315-110.1007/s00477-009-0315-1 Search in Google Scholar

Hamidi, N., Kayaalp, N., 2008. Estimation of the amount of suspended sediment in the Tigris River using artificial neural networks. Clean, 4: 380–386. https://doi.org/10.1002/clen.20070009410.1002/clen.200700094 Search in Google Scholar

Han, D., Chan, L., Zhu, N., 2007. Flood forecasting using support vector machines. Journal of Hydroinformatics, 4: 267–276. https://doi.org/10.2166/hydro.2007.02710.2166/hydro.2007.027 Search in Google Scholar

He, Z., Wen, X., Liu, H., Du, J., 2014. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology, 509: 379–386. https://doi.org/10.1016/j.jhydrol.2013.11.05410.1016/j.jhydrol.2013.11.054 Search in Google Scholar

Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feed forward networks are universal approximates. Neural Networks, 5: 359–366. https://doi.org/10.1016/0893-6080(89)90020-810.1016/0893-6080(89)90020-8 Search in Google Scholar

Hsu, R.J., Lin, C.Y., Hoi, HS, Zheng, SK, Lin, CC, Tsai, HJ, 2010. Novel intronic microRNA represses zebrafish myf5 promoter activity through silencing dickkopf-3 gene. Nucleic Acids Research, 38 (13): 4384–4393. https://doi.org/10.1093/nar/gkq14810.1093/nar/gkq148 Search in Google Scholar

Jang, J.S.R., 1993. ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernet, 23: 665–685. https://doi.org/10.1109/21.25654110.1109/21.256541 Search in Google Scholar

Kakaei Lafdani, E., Moghaddamnia, A., Ahmadi, A., Ebrahimi, H., 2014. Assessing the impact of input variables preprocessing into support vector machine through gamma test method for suspended sediment volume prediction. Journal of Range and Watershed Management, 67 (2): 289–303. (In Persian). DOI: 10.22059/jrwm.2014.51833 Search in Google Scholar

Kane, E.S., Betts, E.F., Burgin, A.J., Clilverd, H.M., Crenshaw, C.L., Fellman, J.B., Myers-Smith, I.H., O’Donnell, J.A., Sobota, D.J., Verseveld, W.J., Jones, J.B., 2008. Precipitation control over inorganic nitrogen import-export budgets across watersheds: A synthesis of long-term ecological research. Ecohydrology, 1: 105–117. https://doi.org/10.1002/eco.1010.1002/eco.10 Search in Google Scholar

Kane, J.M., Lauriello, J., Laska, E., Di Marino, M., Wolfgang, C.D., 2008. Long-term efficacy and safety of iloperidone: Results from 3 clinical trials for the treatment of schizophrenia. Journal of Clinical Psychopharmacology, 28 (2): S29–S35. DOI: 10.1097/JCP.0b013e318169cca710.1097/JCP.0b013e318169cca7 Search in Google Scholar

Khan, M.S., Coulibaly, P., 2006. Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering, 3: 199–205. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:3(199)10.1061/(ASCE)1084-0699(2006)11:3(199) Search in Google Scholar

Kişi, Ö., 2004a. Daily suspended sediment modelling using a fuzzy differential evolution approach. Hydrological Sciences Journal, 1: 183–197. https://doi.org/10.1623/hysj.49.1.183.5400110.1623/hysj.49.1.183.54001 Search in Google Scholar

Kişi, Ö., 2004b. Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment prediction and estimation. Hydrological Sciences Journal, 6: 1025–1040. https://doi.org/10.1623/hysj.49.6.1025.5572010.1623/hysj.49.6.1025.55720 Search in Google Scholar

Kisi, O., Shiri, J., 2012. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques. Computers and Geosciences, 43: 73–8. https://doi.org/10.1016/j.cageo.2012.02.00710.1016/j.cageo.2012.02.007 Search in Google Scholar

Leguedois, S., Plannchon, O., Legout, C., Bissonnais, Y.L., 2005. Splash projection distance for aggregated soils: Theory and experiment. Soil Science Society of America Journal, 69: 30–37. https://doi.org/10.2136/sssaj2005.003010.2136/sssaj2005.0030 Search in Google Scholar

Locke, J., Kitromilides, P., 1990. Deuterē pragmateia peri kyvernēseōs: dokimio me thema tēn alēthinē archē, ektasē kai skopo tēs politikēs exousias [Essay concerning the true original extent and end of civil government]. Athēna: Ekdoseis “GnMsē”. 302 p. Search in Google Scholar

Partal, T., Cigizoglu, HK, 2008. Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. Journal of Hydrology, 358: 317–331. https://doi.org/10.1016/j.jhydrol.2008.06.01310.1016/j.jhydrol.2008.06.013 Search in Google Scholar

Rajaee, T., Mirbagheri, S.A., Zounemat-kermani, M., Nourani, V., 2009. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Science of the Total Environment, 407: 4916–4927. https://doi.org/10.1016/j.scitotenv.2009.05.01610.1016/j.scitotenv.2009.05.01619520419 Search in Google Scholar

Schildt, G., 1998. A distributed user adaptive neuro-fuzzy controller application for home automation. Foundation research project. Vienna University of Technology, Institute of Automation, Austria. Search in Google Scholar

Shu, C., Ouarda, T.B.M.J., 2008. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. Journal of Hydrology, 349: 31–43. https://doi.org/10.1016/j.jhydrol.2007.10.05010.1016/j.jhydrol.2007.10.050 Search in Google Scholar

Sojka, R.E., 2006. PAM Research Project. [cit. 2021-05-25]. http://kimberly.ars.usda.gov/pampage.shtml Search in Google Scholar

Sojka, R.E., Orts, W.J., Entry, J.A., 2004. Soil physics and hydrology: conditioners. In Hillel, D. (ed.). Encyclopedia of soil science. Oxford: Elsevier, p. 301–306. https://doi.org/10.1016/B0-12-348530-4/00501-410.1016/B0-12-348530-4/00501-4 Search in Google Scholar

Soltani, S., Ghezelsoflu, N., Boroughani, M., 2019. Using polyacrylamide to control soil splash erosion in rainfalls with variable intensity and duration. Spanish Journal of Soil Science, 9 (3): 213–222. https://doi.org/10.3232/SJSS.2019.V9.N3.0510.3232/SJSS.2019.V9.N3.05 Search in Google Scholar

Sousa-Vieira, M. E., Suarez-Gonzalez, A., Lopez-Ardao, J. C., Lopez-Garcia, C., 2009. Study and M/G/∞-based modeling of the correlation characteristics of H. 264/AVC video traffic and the SVC extension. In 2009 IEEE International symposium on broadband multimedia systems and broadcasting : Broadband multimedia symposium 2009. 13-15 May 2009, Euskalduna Conference Centre, Bilbao, Spain. Piscataway, NJ: IEEE, p. 1–5.10.1109/ISBMSB.2009.5133734 Search in Google Scholar

Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., 2012. Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes models. Mathematical Problems in Engineering, 2012: article ID 974638, 26 p.. https://doi.org/10.1155/2012/97463810.1155/2012/974638 Search in Google Scholar

Tripathi, R.P., Singh, H.P., 2001. Soil erosion and conservation. New Delhi: New Age International Limited Publication. 210 p. Search in Google Scholar

Vapnik, V., 1995. The nature of statistical learning theory. NewYork: Springer. 189 p. https://doi.org/10.1007/978-1-4757-3264-1-8 Search in Google Scholar

Vapnik, V., Golowich, S.E., Smola, A., 1997. Support vector method for function approximation, regression estimation, and signal processing. In NIPS’96: Proceedings of the 9th International conference on neural information processing systems. Cambridge, MA, USA: M.I.T. Press, p. 281–287. https://doi.org/10.1007/978-1-4757-2440-010.1007/978-1-4757-2440-0 Search in Google Scholar

Wallace, A., Wallace, G.A., 1986. Effects of soil conditioners on emergence and growth of tomato, cotton, and lettuce seedlings. Soil Science, 141: 313–316. https://doi.org/10.1097/00010694-198605000-0000210.1097/00010694-198605000-00002 Search in Google Scholar

Wang, W.C., Chau, K.W., Cheng, C.T., Qiu, L., 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374: 294–306. https://doi.org/10.1016/j.jhydrol.2009.06.01910.1016/j.jhydrol.2009.06.019 Search in Google Scholar

Wang, W.J., Xu, Z.B., Lu, WZ., Zhang, X.Y., 2003. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing, 55: 643–663. https://doi.org/10.1016/S0925-2312(02)00632-X10.1016/S0925-2312(02)00632-X Search in Google Scholar

Yu, H., Wilamowski, B.M., 2011. Levenberg-Marquardt training. In Wilamowski, B.M., Irwin, J.D. The industrial electronics handbook. Intelligent Systems. Vol. 5. Boca Raton: CRC Press, Chapter 12, p. 12-1–12-15. https://doi.org/10.1201/9781315218427-1210.1201/9781315218427-12 Search in Google Scholar

Yu, P.S., Chen, S.T., Chang, I.F., 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328: 704–716. https://doi.org/10.1016/j.jhydrol.2006.01.02110.1016/j.jhydrol.2006.01.021 Search in Google Scholar

Zhang, Y., 1993. A modified effective binary diffusion model. Journal of Geophysical Research-Solid Earth, 98 (7): 11901–11920. https://doi.org/10.1029/93JB0042210.1029/93JB00422 Search in Google Scholar

Zumr, D., Mützenberg, D.V., Neumann, M., Jeřábek, J., Laburda, T., Kavka, P., Johannsen, L.L., Zambon, N., Klik, A., Strauss, P., Dostál, T., 2020. Experimental setup for splash erosion monitoring—Study of silty loam splash characteristics. Sustainability, 12 (1): 157. https://doi.org/10.3390/su1201015710.3390/su12010157 Search in Google Scholar

eISSN:
1338-7014
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Life Sciences, other, Plant Science, Zoology, Ecology