1. bookTom 48 (2021): Zeszyt 1 (May 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1338-7014
Pierwsze wydanie
16 Apr 2017
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
access type Otwarty dostęp

Arsenic in forests – a short review

Data publikacji: 01 Mar 2021
Tom & Zeszyt: Tom 48 (2021) - Zeszyt 1 (May 2021)
Zakres stron: 35 - 41
Otrzymano: 02 Nov 2020
Przyjęty: 18 Nov 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1338-7014
Pierwsze wydanie
16 Apr 2017
Częstotliwość wydawania
2 razy w roku
Języki
Angielski
Abstract

The inputs of As in forest ecosystems have declined since the eighties when the higher concentrations of that metalloid were observed due to industrial activities. The As inputs to the forest floor include throughfall and litterfall where dry deposition is an appreciable percentage. This is manifested by the higher As concentration in older needles of conifers and the enrichment of throughfall relative to the bulk deposition. The throughfall and the forest floor convert the inorganic As into methylated organic As and in this way reduce its toxicity. In unpolluted forests the vast percentage of As is retained in soils because the oxides of Fe and Al are very efficient holders. In polluted forested soils the As can become mobile and enrich the surface runoff waters approaching even the threshold value set by the World Health Organization. For this reason forest soils with high concentration of As due to former high loads should be monitored.

Keywords

Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N.K., Khan, M.I., Amjad, M., Hussain, M., Natasha., 2018. Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. International Journal of Environmental Research and Public Health, 15: 59.10.3390/ijerph15010059 Search in Google Scholar

Bauer, M., Blodau, C., 2009. Arsenic distribution in the dissolved, colloidal and particulate size fractions of experimental solutions rich in dissolved organic matter and ferric iron. Geochimica et Cosmochimica Acta, 73: 529–542.10.1016/j.gca.2008.10.030 Search in Google Scholar

Blaser, P., Zimmermann, S., Luster, J., Shotyk, W., 2000. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb and Zn in Swiss forest soils. Science of the Total Environment, 249: 257–280.10.1016/S0048-9697(99)00522-7 Search in Google Scholar

Bienert, G.P., Jahn, T.P., 2010. Major intrinsic proteins and arsenic transport in plants: new players and their potential role. Advances in Experimental Medicine and Biology, 679: 111–126.10.1007/978-1-4419-6315-4_9 Search in Google Scholar

Kinniburgh, D.G., Smedley, P.L. (eds), 2001. Arsenic contamination of groundwater in Bangladesh. British Technical report (British Geological Survey), WC/00/19. Key-worth: British Geological Survey. 4 vol. Search in Google Scholar

Cheng, Z., Buckley, B.M., Katz, B., Wright, W., Bailey, R., Smith, K.T., Li, J., Curtis, A., van Geen, A., 2007. Arsenic in tree rings at a highly contaminated site. Science of the Total Environment, 376: 324–334.10.1016/j.scitotenv.2007.01.074 Search in Google Scholar

Chrabąszcz, M., Mróz, L., 2017. Tree bark, a valuable source of information on air quality. Polish Journal of Environmental Studies, 26: 453–466.10.15244/pjoes/65908 Search in Google Scholar

Čeburnis, D., Steinnes, E., 2000. Conifer needles as bio-monitors of atmospheric heavy metal deposition: comparison with mosses and precipitation, role of the canopy. Atmospheric Environment, 34: 4265–4271.10.1016/S1352-2310(00)00213-2 Search in Google Scholar

Cullen, W.R., Reimer, K.J., 1989. Arsenic speciation in the environment. Chemical Reviews, 89: 713–764.10.1021/cr00094a002 Search in Google Scholar

Doušová, B., Erbanová, L., Novák, M., 2007. Arsenic in atmospheric deposition at the Czech–Polish border: Two sampling campaigns 20 years apart. Science of the Total Environment, 387: 185–193.10.1016/j.scitotenv.2007.06.02817825361 Search in Google Scholar

Erbanova, L., Novak, M., Fottova, D., Dousova, B., 2008. Export of arsenic from forested catchements under easing atmospheric pollution. Environmental Science and Technology, 42: 7187–7192.10.1021/es800467j18939545 Search in Google Scholar

Gašová, K., Kuklová, M., Kukla, J., 2017. Contents of nutrients and arsenic in litterfall and surface humus in mature nodal beech stands subjected to different emission-immission loads. Folia Oecologica, 44: 11–19.10.1515/foecol-2017-0002 Search in Google Scholar

Gustaffson, J.P., Jacks, G., 1995. Arsenic geochemistry in forested profiles as revealed by solid-phase studies. Applied Geochemistry, 10: 307–315.10.1016/0883-2927(95)00010-H Search in Google Scholar

Harmens, H., Norris, D.A., Koeber, G.R., Buse, A., Steinnes, E., Rϋhling, Ǻ., 2007. Temporal trends in the concentration of arsenic, chromium, copper, iron, nickel, vanadium and zinc in mosses across Europe between 1990 and 2000. Atmospheric Environment, 41: 6673–6687.10.1016/j.atmosenv.2007.03.062 Search in Google Scholar

Harmens, H., Norris, D.A. et al., 2015. Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environmental Pollution, 200: 93–104.10.1016/j.envpol.2015.01.03625703579 Search in Google Scholar

Huang, J.H., Matzner, E., 2007a. Fluxes of inorganic and organic arsenic species in a Norway spruce forest floor. Environmental Pollution, 149: 201–208.10.1016/j.envpol.2007.01.00417624646 Search in Google Scholar

Huang, J.H., Matzner, E., 2007b. Biogeochemistry of organic and inorganic arsenic species in a forested catchment in Germany. Environmental Science and Technology, 41: 1564–1569.10.1021/es061586d17396642 Search in Google Scholar

Huang, J.H., Matzner, E., 2007c. Mobile arsenic species in unpolluted and polluted soils. Science of the Total Environment, 377: 308–318.10.1016/j.scitotenv.2007.01.05917391732 Search in Google Scholar

Jacobs, L.W., Syers, J.K., Keeney, D.R., 1970. Arsenic sorption by soils. Soil Science Society of America Journal, 34: 750–754.10.2136/sssaj1970.03615995003400050024x Search in Google Scholar

Kabata-Pendias, A., Pendias, H., 2000. Trace elements in soils and plants. Boca Raton, Florida: CRC Press. 315 p.10.1201/9781420039900 Search in Google Scholar

Koch, I., Wang, L., Ollson, C.A., Cullen, W.R., Reimer, K.J., 2000. The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada. Environmental Science and Technology, 34: 22–26.10.1021/es9906756 Search in Google Scholar

Lag, J., Steinnes, E., 1978. Regional distribution of selenium and arsenic in humus layers of Norwegian forest soils. Geoderma, 20: 3–14.10.1016/0016-7061(78)90045-9 Search in Google Scholar

Lin, Z.Q., Schuepp, P.H., Schemenauer, RS., Kennedy, G.G., 1995. Trace metal contamination in and on balsam fir (Abies balsamea (l) Mill.) foliage in southern Quebec, Canada. Water, Air and Soil Pollution, 81: 175–191.10.1007/BF00477264 Search in Google Scholar

Livesey, N.T., Huang, P.M., 1981. Adsorption arsenate by soils and its relation to selected chemical properties and anions. Soil Science, 131: 88–94.10.1097/00010694-198102000-00004 Search in Google Scholar

Mandal, K.M, Suzuki, K.T., 2002. Arsenic round the world: a review. Talanta, 58: 201–235.10.1016/S0039-9140(02)00268-0 Search in Google Scholar

Mankovska, B., 1998. The chemical composition of spruce and beech foliage as environmental indicator in Slovakia. Chemosphere, 36: 949–953.10.1016/S0045-6535(97)10153-9 Search in Google Scholar

Matschullat, J., 2000. Arsenic in the geosphere - a review. Science of the Total Environment, 249: 297–312.10.1016/S0048-9697(99)00524-0 Search in Google Scholar

Meharg, A.A., Hartley-Whitaker, J., 2002. Arsenic up-take and metabolism in arsenic resistant and non-resistant plant species. New Phytologist, 154: 29–43.10.1046/j.1469-8137.2002.00363.x Search in Google Scholar

Michopoulos, P., Bourletsikas, A., Kaoukis, K., Daskalakou, E., Karetsos, G., Kostakis, M., Thomaidis, N.S., Pasias, I.N., Kaberi, H., Iliakis, S., 2018. The distribution and variability of heavy metals in a mountainous fir forest ecosystem in two hydrological years. Global NEST Journal, 20: 188–197.10.30955/gnj.002506 Search in Google Scholar

Moreno-Jiménez, E., Esteban, E., Peñalosa, J.M., 2012. The fate of arsenic in soil-plant systems. In Whitacre, D.M. (ed.). Reviews of Environmental Contamination and Toxicology, 215. New York: Springer New York, p. 1–37.10.1007/978-1-4614-1463-6_122057929 Search in Google Scholar

Novak, M., Erbanova, L., Fottova, D., Cudlin, P., Kubena, A., 2011. Behaviour of arsenic in forested catchments following a high-pollution period. Environmental Pollution, 159: 204–211.10.1016/j.envpol.2010.09.00220932620 Search in Google Scholar

Nygard, T., Steinnes, E., Rayset, O., 2012. Distribution of 32 elements in organic surface soils: contributions from atmospheric transport of pollutants and natural sources. Water, Air and Soil Pollution, 223: 699–713.10.1007/s11270-011-0895-5 Search in Google Scholar

Panda, S.K., Upadhyay, R.K., Nath, S., 2010. Arsenic stress in plants. Journal of Agronomy and Crop Science, 196: 161–174.10.1111/j.1439-037X.2009.00407.x Search in Google Scholar

Pradosh, R., Saha, A., 2002. Metabolism and toxicity of arsenic: a human carcinogen. Current Science, 82: 38–45. Search in Google Scholar

Punshon, T., Jacson, B.P., Meharg, A.A., Warczack, T., Scheckel, K., Guerinot, M.L., 2017. Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Science of the Total Environment, 581-582: 209–220.10.1016/j.scitotenv.2016.12.111 Search in Google Scholar

Schelle, E., Rawlins, B.G., Lark, R.M., Webster, R., Staton, I., McLeod, C.W., 2008. Mapping aerial metal deposition in metropolitan areas from tree bark: a case study in Sheffield, England. Environmental Pollution, 155: 164–173.10.1016/j.envpol.2007.10.036 Search in Google Scholar

Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17: 517–568.10.1016/S0883-2927(02)00018-5 Search in Google Scholar

Steiness, E. Friedland, A.J., 2005. Metal contamination of natural surface soils from long-range atmospheric transport: existing and missing knowledge. Environmental Reviews, 14: 169–186.10.1139/a06-002 Search in Google Scholar

Strawn, D.D., 2018. Review of interactions between phosphorus and arsenic in soils from four case studies. Geo-chemical Transactions, 19: 10.10.1186/s12932-018-0055-6 Search in Google Scholar

Suchara, I., Sucharová, J., 2002. Distribution of sulphur and heavy metals in forest floor humus of the Czech Republic. Water, Air and Soil Pollution, 136: 289–316.10.1023/A:1015235924991 Search in Google Scholar

Tang, R., Wang, H., Luo J., Sun, S., Gong, Y.,She, J., Chen, Y., Dandan, Y., Zhou, J., 2015. Spatial distribution and temporal trends of mercury and arsenic in remote timberline coniferous forests, eastern of the Tibet Plateau, China. Environmental Science and Pollution Research, 22: 11658–11668.10.1007/s11356-015-4441-7 Search in Google Scholar

Van Herrewghe, S., Swennen, R., Vandecasteele, C., Cappuyns, V., 2003. Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environmental Pollution, 122: 323–342.10.1016/S0269-7491(02)00332-9 Search in Google Scholar

(WHO) World Health Organization, 2020. Arsenic. [cit. 2020-10-02]. https://www.who.int/news-room/fact-sheets/detail/arsenic Search in Google Scholar

Weng, L., Van Riemsdijk, W.H., Hiemstra, T., 2009. Effects of fulvic acids on arsenate adsorption to goethite: experiments and modelling. Environmental Science and Technology, 43: 7198–7204.10.1021/es9000196 Search in Google Scholar

Wenzel, W.W., Brandstetter, A., Wutte, H., Lombi, E., Prohaska, T., Stingeder, G., Adriano, D.C., 2002. Arsenic in field-collected soil solutions and extracts of contaminated soils and its implication to soil standards. Journal of Plant Nutrition and Soil Science, 165: 221–228.10.1002/1522-2624(200204)165:2<221::AID-JPLN221>3.0.CO;2-0 Search in Google Scholar

Wyttenbach, A., Bajo, S., Tobler, L., 1990. Major and trace elements in spruce needles by NAA. In Schrauzer, G.N., (ed.). Biological trace element research. Clifton, UK: Humana Press, p, 213–221.10.1007/978-1-4612-0473-2_23 Search in Google Scholar

Wyttenbach, A., Bajo, S., Tobler, L.A., 1996. Arsenic concentrations in successive needle age classes of Norway spruce (Picea abies [L.] Karst.). Fresenius Journal of Analytical Chemistry, 354: 668–671.10.1007/s0021663540668 Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo