This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Firoozi R., Tucker J., Tian S., Majumdar A., Sun J., Liu W., Zhu Y., Song S., Kapoor A., Hausman K., Ichter B., Driess D., Wu J., Lu C., and Schwager M. Foundation models in robotics: Applications, challenges, and the future, 2023.Search in Google Scholar
Jaquier N., Welle M. C., Gams A., Yao K., Fichera B., Billard A., Ude A., Asfour T., and Kragic D. Transfer learning in robotics: An upcoming breakthrough? a review of promises and challenges. The International Journal of Robotics Research, 44(3):465–485, 2025.Search in Google Scholar
Nalepa G. J. and Stefanowski J. Artificial intelligence research community and associations in poland. Foundations of Computing and Decision Sciences, 45(3):159–177, 2020.Search in Google Scholar
Skrzypczyński P. and Kornuta T. Preface to the special issue on recent progress in 3-D visual perception of robots. Foundations of Computing and Decision Sciences, 42(3):179–182, 2017.Search in Google Scholar
Sünderhauf N., Brock O., Scheirer W., Hadsell R., Fox D., Leitner J., Upcroft B., Abbeel P., Burgard W., Milford M., and Corke P. The limits and potentials of deep learning for robotics. The International Journal of Robotics Research, 37(4–5):405–420, 2018.Search in Google Scholar
Tang C., Abbatematteo B., Hu J., Chandra R., Mart/ın-Mart/ın R., and Stone P. Deep reinforcement learning for robotics: A survey of real-world successes. Proceedings of the AAAI Conference on Artificial Intelligence, 39(27):28694–28698, 2025.Search in Google Scholar