Otwarty dostęp

Aspects in Classification Learning - Review of Recent Developments in Learning Vector Quantization


Zacytuj

[1] F. Aiolli and A. Sperduti. A re-weighting strategy for improving margins. Artifiical Intelligence, 137:197-216, 2002.10.1016/S0004-3702(02)00122-4Search in Google Scholar

[2] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society, 68:337-404, 1950.10.1090/S0002-9947-1950-0051437-7Search in Google Scholar

[3] A. Backhaus and U. Seiffert. Classification in high-dimensional spectral data: Accuracy vs. interpretability vs. model size. Neurocomputing, page in press, 2014.10.1016/j.neucom.2013.09.048Search in Google Scholar

[4] Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1-127, 2009.10.1561/2200000006Search in Google Scholar

[5] B.Hammer and A.Hasenfuss. Relational neural gas. Künstliche Intelligenz, pages 190-204, 2007.10.1007/978-3-540-74565-5_16Search in Google Scholar

[6] M. Biehl. Admire LVQ: Adaptive distance measures in relevance Learning Vector Quantization. KI - Künstliche Intelligenz, 26:391-395, 2012.Search in Google Scholar

[7] M. Biehl, K. Bunte, and P. Schneider. Analysis of flow cytometry data by matrix relevance learning vector quantization. PLoS ONE, 8(3):e59401, 2013.10.1371/journal.pone.0059401Search in Google Scholar

[8] M. Biehl, A. Ghosh, and B. Hammer. Dynamics and generalization ability of LVQ algorithms. Journal of Machine Learning Research, 8:323-360, 2007.Search in Google Scholar

[9] M. Biehl, B. Hammer, and T. Villmann. Distance measures for prototype based classification. In N. Petkov, editor, Proceedings of the International Workshop on Brain-Inspired Computing 2013 (Cetraro/Italy), page in press. Springer, 2014.10.1007/978-3-319-12084-3_9Search in Google Scholar

[10] M. Biehl, M. Kaden, and T. Villmann. Statistical quality measures and ROC-optimization by learning vector quantization classifiers. In H. Kestler, M. Schmid, H. Binder, and B. Bischl, editors, Proceedings of the 46th Workshop on Statistical Computing (Ulm/Reisensburg 2014), number 2014-xxx in Ulmer Informatik-Berichte, page accepted. University Ulm, Germany, 2014.Search in Google Scholar

[11] M. Biehl, P. Schneider, D. Smith, H. Stiekema, A. Taylor, B. Hughes, C. Shackleton, P. Stewart, and W. Arlt. Matrix relevance LVQ in steroid metabolomics based classification of adrenal tumors. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2012), pages 423-428, Louvain-La-Neuve, Belgium, 2012. i6doc.com.Search in Google Scholar

[12] C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.Search in Google Scholar

[13] T. Bojer, B. Hammer, D. Schunk, and T. von Toschanowitz K. Relevance determination in learning vector quantization. In 9th European Symposium on Artificial Neural Networks. ESANN’2001. Proceedings. D-Facto, Evere, Belgium, pages 271-6, 2001.Search in Google Scholar

[14] C. Bouveyron, S. Girard, and C. Schmid. High-dimensional data clustering. Computational Statistics and Data Analysis, 57(1):502-519, 2007.10.1016/j.csda.2007.02.009Search in Google Scholar

[15] A. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7):1149-1155, 1997.10.1016/S0031-3203(96)00142-2Search in Google Scholar

[16] K. Bunte, P. Schneider, B. Hammer, F.-M. Schleif, T. Villmann, and M. Biehl. Limited rank matrix learning, discriminative dimension reduction and visualization. Neural Networks, 26(1):159-173, 2012.10.1016/j.neunet.2011.10.00122041220Search in Google Scholar

[17] T. Calinski and J. Harabacz. A dendrite method for cluster analysis. Communications in Statistics, 3:1-27, 1974.10.1080/03610917408548446Search in Google Scholar

[18] K. Chidanananda and G. Krishna. The condensed nearest neighbor rule using the concept of mutual nearest neighborhood. IEEE Transactions on Information Theory, 25:488-490, 1979.10.1109/TIT.1979.1056066Search in Google Scholar

[19] C. Chow. On optimum recognition error and reject tradeoff. IEEE Transaction on Information Theory, 16(1):41-46, 1970.10.1109/TIT.1970.1054406Search in Google Scholar

[20] A. Cichocki, R. Zdunek, A. Phan, and S.-I. Amari. Nonnegative Matrix and Tensor Factorizations. Wiley, Chichester, 2009.10.1002/9780470747278Search in Google Scholar

[21] R. Cilibrasi and P. Vitányi. Clustering by compression. IEEE Transactions on Information Theory, 51(4):1523-1545, 2005.10.1109/TIT.2005.844059Search in Google Scholar

[22] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13:21-27, 1967.10.1109/TIT.1967.1053964Search in Google Scholar

[23] K. Crammer, R. Gilad-Bachrach, A. Navot, and A.Tishby. Margin analysis of the LVQ algorithm. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing (Proc. NIPS 2002), volume 15, pages 462-469, Cambridge, MA, 2003. MIT Press.Search in Google Scholar

[24] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, 2000.10.1017/CBO9780511801389Search in Google Scholar

[25] J. Davis and M. Goadrich. The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pages 233-240, New York, NY, USA, 2006. ACM.10.1145/1143844.1143874Search in Google Scholar

[26] R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley, New York, 1973.Search in Google Scholar

[27] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27:861-874, 2006.10.1016/j.patrec.2005.10.010Search in Google Scholar

[28] L. Fischer, D. Nebel, T. Villmann, B. Hammer, and H. Wersing. Rejection strategies for learning vector quantization U a comparison of probabilistic and deterministic approaches. In T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida, Advances in Intelligent Systems and Computing, page accepted, Berlin, 2014. Springer.10.1007/978-3-319-07695-9_10Search in Google Scholar

[29] R. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):179-188, 1936.10.1111/j.1469-1809.1936.tb02137.xSearch in Google Scholar

[30] T. Geweniger, P. Schneider, F.-M. Schleif, M. Biehl, and T. Villmann. Extending RSLVQ to handle data points with uncertain class assignments. Machine Learning Reports, 3(MLR-02-2009):1-17, 2009. ISSN:1865-3960, http://www.uni-leipzig.de/~compint/mlr/mlr_02_2009.pdf.Search in Google Scholar

[31] T. Geweniger and T. Villmann. Extending FSNPC to handle data points with fuzzy class assignments. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks (ESANN’2010), pages 399-404, Evere, Belgium, 2010. d-side publications.Search in Google Scholar

[32] T. Geweniger, D. Zühlke, B. Hammer, and T. Villmann. Median fuzzy c-means for clustering dissimilarity data. Neurocomputing, 73(7-9):1109-1116, 2010.10.1016/j.neucom.2009.11.020Search in Google Scholar

[33] Z. Gu, M. Shao, L. Li, and Y. Fu. Discriminative metric: Schatten norms vs. vector norm. In Proc. of The 21st International Conference on Pattern Recognition (ICPR 2012), pages 1213-1216, 2012.Search in Google Scholar

[34] B. Hammer, M. Strickert, and T. Villmann. Relevance LVQ versus SVM. In L. Rutkowski, J. Siekmann, R. Tadeusiewicz, and L. Zadeh, editors, Artificial Intelligence and Soft Computing (ICAISC 2004), Lecture Notes in Artificial Intelligence 3070, pages 592-597. Springer Verlag, Berlin-Heidelberg, 2004.10.1007/978-3-540-24844-6_89Search in Google Scholar

[35] B. Hammer, M. Strickert, and T. Villmann. On the generalization ability of GRLVQ networks. Neural Processing Letters, 21(2):109-120, 2005.10.1007/s11063-004-1547-1Search in Google Scholar

[36] B. Hammer, M. Strickert, and T. Villmann. Supervised neural gas with general similarity measure. Neural Processing Letters, 21(1):21-44, 2005.10.1007/s11063-004-3255-2Search in Google Scholar

[37] B. Hammer and T. Villmann. Generalized relevance learning vector quantization. Neural Networks, 15(8-9):1059-1068, 2002.10.1016/S0893-6080(02)00079-5Search in Google Scholar

[38] J. Hanley and B. McNeil. The meaning and use of the area under a receiver operating characteristic. Radiology, 143:29-36, 1982.10.1148/radiology.143.1.70637477063747Search in Google Scholar

[39] P. Hart. The condensed nearest neighbor rule. IEEE Transactions on Information Theory, 14:515-516, 1968.10.1109/TIT.1968.1054155Search in Google Scholar

[40] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer Verlag, Heidelberg-Berlin, 2001.10.1007/978-0-387-21606-5Search in Google Scholar

[41] S. Haykin. Neural Networks - A Comprehensive Foundation. IEEE Press, New York, 1994.Search in Google Scholar

[42] R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, 2nd edition, 2013.Search in Google Scholar

[43] J. Huang and C. X. Ling. Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3):299-310, 2005.10.1109/TKDE.2005.50Search in Google Scholar

[44] M. Kaden, W. Hermann, and T. Villmann. Optimization of general statistical accuracy measures for classification based on learning vector quantization. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2014), pages 47-52, Louvain-La-Neuve, Belgium, 2014. i6doc.com.Search in Google Scholar

[45] M. Kaden and T. Villmann. A framework for optimization of statistical classification measures based on generalized learning vector quantization. Machine Learning Reports, 7(MLR-02-2013):69-76, 2013. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_02_2013.pdf.Search in Google Scholar

[46] M. Kaden and T. Villmann. Attention based classification learning in GLVQ and asymmetric classification error assessment. In T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida, Advances in Intelligent Systems and Computing, page accepted, Berlin, 2014. Springer.10.1007/978-3-319-07695-9_7Search in Google Scholar

[47] M. Kästner, D. Nebel, M. Riedel, M. Biehl, and T. Villmann. Differentiable kernels in generalized matrix learning vector quantization. In Proc. of the Internacional Conference of Machine Learning Applications (ICMLA’12), pages 1-6. IEEE Computer Society Press, 2012.10.1109/ICMLA.2012.231Search in Google Scholar

[48] M. Kästner, M. Riedel, M. Strickert, W. Hermann, and T. Villmann. Bordersensitive learning in kernelized learning vector quantization. In I. Rojas, G. Joya, and J. Cabestany, editors, Proc. of the 12th International Workshop on Artificial Neural Networks (IWANN), volume 7902 of LNCS, pages 357-366, Berlin, 2013. Springer.10.1007/978-3-642-38679-4_35Search in Google Scholar

[49] M. Kästner, M. Strickert, D. Labudde, M. Lange, S. Haase, and T. Villmann. Utilization of correlation measures in vector quantization for analysis of gene expression data - a review of recent developments. Machine Learning Reports, 6(MLR-04-2012):5-22, 2012. ISSN:1865-3960, http://www.techfak.unibielefeld.de/~fschleif/mlr/mlr_04_2012.pdf.Search in Google Scholar

[50] S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with reduced classifier complexity. Journal of Machine Learning Research, 7:1493-1515, 2006.Search in Google Scholar

[51] T. Kohonen. Automatic formation of topological maps of patterns in a selforganizing system. In E. Oja and O. Simula, editors, Proc. 2SCIA, Scand. Conf. on Image Analysis, pages 214-220, Helsinki, Finland, 1981. Suomen Hahmontunnistustutkimuksen Seura r. y.Search in Google Scholar

[52] T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Information Sciences. Springer, Berlin, Heidelberg, 1995. (Second Extended Edition 1997).10.1007/978-3-642-97610-0Search in Google Scholar

[53] T. Kohonen, J. Kangas, J. Laaksonen, and K. Torkkola. LVQ_PAK: A program package for the correct application of Learning Vector Quantization algorithms. In Proc. IJCNN’92, International Joint Conference on Neural Networks, volume I, pages 725-730, Piscataway, NJ, 1992. IEEE Service Center.Search in Google Scholar

[54] M. Lange. Partielle Korrelationen und Partial Mutual Information zur Analyse von fMRT-Zeitreihen. Master’s thesis, University of Applied Sciences Mittweida, Mittweida, Saxony, Germany, 2012.Search in Google Scholar

[55] M. Lange, M. Biehl, and T. Villmann. Non-Euclidean principal component analysis by Hebbian learning. Neurocomputing, page in press, 2014.10.1007/978-3-319-07173-2_8Search in Google Scholar

[56] M. Lange, D. Nebel, and T. Villmann. Non-Euclidean principal component analysis for matrices by Hebbian learning. In L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh, and J. Zurada, editors, Artificial Intelligence and Soft Computing - Proc. the International Conference ICAISC, Zakopane, volume 1 of LNAI 8467, pages 77-88, Berlin Heidelberg, 2014. Springer.10.1007/978-3-319-07173-2_8Search in Google Scholar

[57] M. Lange and T. Villmann. Derivatives of lp-norms and their approximations. Machine Learning Reports, 7(MLR-04-2013):43-59, 2013. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_04_2013.pdf.Search in Google Scholar

[58] M. Lange, D. Zühlke, O. Holz, and T. Villmann. Applications of lp-norms and their smooth approximations for gradient based learning vector quantization. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2014), pages 271-276, Louvain-La-Neuve, Belgium, 2014. i6doc.com.Search in Google Scholar

[59] T. Martinetz and K. Schulten. Topology representing networks. Neural Networks, 7(2), 1994.10.1016/0893-6080(94)90109-0Search in Google Scholar

[60] T. M. Martinetz, S. G. Berkovich, and K. J. Schulten. ’Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks, 4(4):558-569, 1993.10.1109/72.23831118267757Search in Google Scholar

[61] C. Micchelli, Y. Xu, and H. Zhang. Universal kernels. Journal of Machine Learning Research, 7:26051-2667, 2006.Search in Google Scholar

[62] M.Strickert, B. Labitzke, A. Kolb, and T. Villmann. Multispectral image characterization by partial generalized covariance. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks (ESANN’2011), pages 105-110, Louvain-La-Neuve, Belgium, 2011. i6doc.com.Search in Google Scholar

[63] E. Mwebaze, P. Schneider, F.-M. Schleif, J. Aduwo, J. Quinn, S. Haase, T. Villmann, and M. Biehl. Divergence based classification in learning vector quantization. Neurocomputing, 74(9):1429-1435, 2011.10.1016/j.neucom.2010.10.016Search in Google Scholar

[64] D. Nebel, B. Hammer, and T. Villmann. Supervised generative models for learning dissimilarity data. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2014), pages 35-40, Louvain-La-Neuve, Belgium, 2014. i6doc.com.Search in Google Scholar

[65] D. Nebel and T. Villmann. About the equivalence of robust soft learning vector quantization and soft nearest prototype classification. Machine Learning Reports, 7(MLR-02-2013):114-118, 2013. ISSN:1865-3960, http://www.techfak.uni-bielefeld.de/~fschleif/mlr/mlr_02_2013.pdf.Search in Google Scholar

[66] D. Nebel and T. Villmann. A median variant of generalized learning vector quantization. In M. Lee, A. Hirose, Z.-G. Hou, and R. Kil, editors, Proceedings of International Conference on Neural Information Processing (ICONIP), volume II of LNCS, pages 19-26, Berlin, 2013. Springer-Verlag.10.1007/978-3-642-42042-9_3Search in Google Scholar

[67] N. Niang and G. Saporta. Supervised classification and AUC. In Workshop Franco-Brésilien sur la fouille de données, pages 32-33, 2009.Search in Google Scholar

[68] D. Nova and P. Estévez. A review of learning vector quantization classifiers. Neural Computation and Applications, 2013.10.1007/s00521-013-1535-3Search in Google Scholar

[69] J. Principe. Information Theoretic Learning. Springer, Heidelberg, 2010.10.1007/978-1-4419-1570-2Search in Google Scholar

[70] J. C. Principe, J. F. III, and D. Xu. Information theoretic learning. In S. Haykin, editor, Unsupervised Adaptive Filtering. Wiley, New York, NY, 2000.Search in Google Scholar

[71] A. Qin and P. Suganthan. Initialization insensitive LVQ algorithm based on cost-function adaptation. Pattern Recognition, 38:773 U-776, 2004.10.1016/j.patcog.2004.11.011Search in Google Scholar

[72] A. Qin and P. Suganthan. A novel kernel prototype-based learning algorithm. In Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04), volume 4, pages 621-624, 2004.10.1109/ICPR.2004.1333849Search in Google Scholar

[73] M. Riedel, D. Nebel, T. Villmann, and B. Hammer. Generative versus discriminative prototype based classification. In T. Villmann, F.-M. Schleif, M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps: 10th International Workshop WSOM 2014 Mittweida, Advances in Intelligent Systems and Computing, page accepted, Berlin, 2014. Springer.Search in Google Scholar

[74] C. Rijsbergen. Information Retrieval. Butterworths, London, 2nd edition edition, 1979.Search in Google Scholar

[75] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psych. Rev., 65:386-408, 1958.Search in Google Scholar

[76] L. Sachs. Angewandte Statistik. Springer Verlag, 7-th edition, 1992.10.1007/978-3-662-05747-6Search in Google Scholar

[77] A. Sato and K. Yamada. Generalized learning vector quantization. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pages 423-9. MIT Press, Cambridge, MA, USA, 1996.Search in Google Scholar

[78] R. Schatten. A Theory of Cross-Spaces, volume 26 of Annals of Mathematics Studies. Princeton University Press, 1950.Search in Google Scholar

[79] F.-M. Schleif, T. Villmann, and B. Hammer. Prototype based fuzzy classification in clinical proteomics. International Journal of Approximate Reasoning, 47(1):4-16, 2008.10.1016/j.ijar.2007.03.005Search in Google Scholar

[80] F.-M. Schleif, T. Villmann, B. Hammer, and P. Schneider. Efficient kernelized prototype based classification. International Journal of Neural Systems, 21(6):443-457, 2011.10.1142/S012906571100295X22131298Search in Google Scholar

[81] F.-M. Schleif, T. Villmann, M. Kostrzewa, B. Hammer, and A. Gammerman. Cancer informatics by prototype networks in mass spectrometry. Artificial Intelligence in Medicine, 45(2-3):215-228, 2009.10.1016/j.artmed.2008.07.01818778925Search in Google Scholar

[82] F.-M. Schleif, X. Zhu, and B. Hammer. A conformal classifier for dissimilarity data. In L. I. I. Maglogiannis, H. Papadopoulos, K. Karatzas, and S. Siouta, editors, Proceedings of AIAI 2012, Halkidiki, Greece, volume 382 of IFIP Advances in Information and Communication Technology, pages 234-243, Berlin, 2012. Springer.10.1007/978-3-642-33412-2_24Search in Google Scholar

[83] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.Search in Google Scholar

[84] P. Schneider, K. Bunte, H. Stiekema, B. Hammer, T. Villmann, and M. Biehl. Regularization in matrix relevance learning. IEEE Transactions on Neural Networks, 21(5):831-840, 2010.10.1109/TNN.2010.204272920236882Search in Google Scholar

[85] P. Schneider, T. Geweniger, F.-M. Schleif, M. Biehl, and T. Villmann. Multivariate class labeling in Robust Soft LVQ. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks (ESANN’2011), pages 17-22, Louvain-La-Neuve, Belgium, 2011. i6doc.com.Search in Google Scholar

[86] P. Schneider, B. Hammer, and M. Biehl. Adaptive relevance matrices in learning vector quantization. Neural Computation, 21:3532-3561, 2009.10.1162/neco.2009.11-08-90819764875Search in Google Scholar

[87] P. Schneider, B. Hammer, and M. Biehl. Distance learning in discriminative vector quantization. Neural Computation, 21:2942-2969, 2009.10.1162/neco.2009.10-08-89219635012Search in Google Scholar

[88] C. Scovel, D. Hush, I. Steinwart, and J. Theiler. Radial kernels and their reproducing kernel Hilbert spaces. Journal of Complexity, 26:641-660, 2010.10.1016/j.jco.2010.03.002Search in Google Scholar

[89] S. Seo, M. Bode, and K. Obermayer. Soft nearest prototype classification. IEEE Transaction on Neural Networks, 14:390-398, 2003.10.1109/TNN.2003.80940718238021Search in Google Scholar

[90] S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computation, 15:1589-1604, 2003.10.1162/08997660332189181912816567Search in Google Scholar

[91] G. Shafer and V. Vovk. A tutorial on conformal prediction. Journal of Machine Learning Research, 9:371-421, 2008.Search in Google Scholar

[92] R. Shaffer, S. Rose-Pehrsson, and R. A. McGill. Probabilistic neural networks for chemical sensor array pattern recognition: Comparison studies, improvements and automated outlier rejection. Technical Report NRL/FR/6110-98-9879, Naval Research Laboratory, Washington, DC, 1998.Search in Google Scholar

[93] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis and Discovery. Cambridge University Press, 2004.10.1017/CBO9780511809682Search in Google Scholar

[94] I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2001.Search in Google Scholar

[95] M. Strickert and K. Bunte. Soft rank neighbor embeddings. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2013), pages 77-82, Louvain- La-Neuve, Belgium, 2013. i6doc.com.Search in Google Scholar

[96] M. Strickert, F.-M. Schleif, U. Seiffert, and T. Villmann. Derivatives of Pearson correlation for gradient-based analysis of biomedical data. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial, (37):37-44, 2008.10.4114/ia.v12i37.956Search in Google Scholar

[97] M. Strickert, F.-M. Schleif, T. Villmann, and U. Seiffert. Unleashing pearson correlation for faithful analysis of biomedical data. In M. Biehl, B. Hammer, M. Verleysen, and T. Villmann, editors, Similarity-based Clustering, volume 5400 of LNAI, pages 70-91. Springer, Berlin, 2009.10.1007/978-3-642-01805-3_5Search in Google Scholar

[98] K. Torkkola. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research, 3:1415-1438, 2003.10.1109/ICASSP.2002.1005866Search in Google Scholar

[99] S. Vanderlooy and E. Hüllermeier. A critical analysis of variants of the AUC. Machine Learning, 72:247-262, 2008.10.1007/s10994-008-5070-xSearch in Google Scholar

[100] V. Vapnik. Statistical Learning Theory. Wiley and Sons, New York, 1998.Search in Google Scholar

[101] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16(2):264-280, 1971.10.1137/1116025Search in Google Scholar

[102] T. Villmann and S. Haase. Divergence based vector quantization. Neural Computation, 23(5):1343-1392, 2011.10.1162/NECO_a_00110Search in Google Scholar

[103] T. Villmann, S. Haase, and M. Kaden. Kernelized vector quantization in gradient-descent learning. Neurocomputing, page in press, 2014. 10.1016/j.neucom.2013.11.048Search in Google Scholar

[104] T. Villmann, S. Haase, and M. Kästner. Gradient based learning in vector quantization using differentiable kernels. In P. Estevez, J. Principe, and P. Zegers, editors, Advances in Self-Organizing Maps: 9th International Workshop WSOM 2012 Santiage de Chile, volume 198 of Advances in Intelligent Systems and Computing, pages 193-204, Berlin, 2013. Springer.10.1007/978-3-642-35230-0_20Search in Google Scholar

[105] T. Villmann, B. Hammer, F.-M. Schleif, T. Geweniger, and W. Herrmann. Fuzzy classification by fuzzy labeled neural gas. Neural Networks, 19:772-779, 2006.10.1016/j.neunet.2006.05.026Search in Google Scholar

[106] T. Villmann, B. Hammer, F.-M. Schleif, W. Hermann, and M. Cottrell. Fuzzy classification using information theoretic learning vector quantization. Neurocomputing, 71:3070-3076, 2008.10.1016/j.neucom.2008.04.048Search in Google Scholar

[107] T. Villmann, F.-M. Schleif, and B. Hammer. Prototype-based fuzzy classification with local relevance for proteomics. Neurocomputing, 69(16-18):2425-2428, October 2006.10.1016/j.neucom.2006.02.003Search in Google Scholar

[108] V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random world. Springer, Berlin, 2005.Search in Google Scholar

[109] A. Witoelar, A. Gosh, J. de Vries, B. Hammer, and M. Biehl. Windowbased example selection in learning vector quantization. Neural Computation, 22(11):2924-2961, 2010.10.1162/NECO_a_00030Search in Google Scholar

[110] Y. Wu, K. Ianakiev, and V. Govindaraju. Improved k-nearest neighbor classification. Pattern Recognition, 35:2311 - 2318, 2002.10.1016/S0031-3203(01)00132-7Search in Google Scholar

[111] D. Zühlke, T. Geweniger, U. Heimann, and T. Villmann. Fuzzy Fleiss-Kappa for comparison of fuzzy classifiers. In M. Verleysen, editor, Proc. of the European Symposium on Artificial Neural Networks (ESANN’2009), pages 269-274, Evere, Belgium, 2009. d-side publications.Search in Google Scholar

[112] X. Zhu, F.-M. Schleif, and B. Hammer. Semi-supervised vector quantization for proximity data. In M. Verleysen, editor, Proc. of European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN’2013), pages 89-94, Louvain-La-Neuve, Belgium, 2013. i6doc.com. Search in Google Scholar

eISSN:
2300-3405
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Computer Sciences, Artificial Intelligence, Software Development