This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Aliabadi, M. H. (2002). The boundary element method: Applications in solids and structures (Vol. 2). John Wiley & Sons.AliabadiM. H. (2002). The boundary element method: Applications in solids and structures (Vol. 2). John Wiley & Sons.Search in Google Scholar
Balbín, J., Chaves, V., & Larrosa, N. (2021). Pit to crack transition and corrosion fatigue lifetime reduction estimations by means of a short crack microstructural model. Corrosion Science, 180, 109171. https://doi.org/10.1016/j.corsci.2020.109171BalbínJ.ChavesV.LarrosaN. (2021). Pit to crack transition and corrosion fatigue lifetime reduction estimations by means of a short crack microstructural model. Corrosion Science, 180, 109171. https://doi.org/10.1016/j.corsci.2020.109171Search in Google Scholar
Bergant, M., Larrosa, N. O., Yawny, A., & Madia, M. (2023). Short crack growth model for the evaluation of the fatigue strength of WAAM TI6AL-4V alloy containing pore-type defects. Engineering Fracture Mechanics, 289, 109467. https://doi.org/10.1016/j.engfracmech.2023.109467BergantM.LarrosaN. O.YawnyA.MadiaM. (2023). Short crack growth model for the evaluation of the fatigue strength of WAAM TI6AL-4V alloy containing pore-type defects. Engineering Fracture Mechanics, 289, 109467. https://doi.org/10.1016/j.engfracmech.2023.109467Search in Google Scholar
Couckuyt, I., Dhaene, T., & Demeester, P. (2014). Oodace toolbox: A flexible object-oriented Kriging implementation. Journal of Machine Learning Research, 15, 3183–3186. https://doi.org/10.1016/j.ijfatigue.2006.10.027CouckuytI.DhaeneT.DemeesterP. (2014). Oodace toolbox: A flexible object-oriented Kriging implementation. Journal of Machine Learning Research, 15, 3183–3186. https://doi.org/10.1016/j.ijfatigue.2006.10.027Search in Google Scholar
Cross, R., Makeev, A., & Armanios, E. (2007). Simultaneous uncertainty quantification of fracture mechanics based life prediction model parameters. International Journal of Fatigue, 29, 1510–1515.CrossR.MakeevA.ArmaniosE. (2007). Simultaneous uncertainty quantification of fracture mechanics based life prediction model parameters. International Journal of Fatigue, 29, 1510–1515.Search in Google Scholar
Davidson, D., Chan, K., McClung, R., & Hudak, S. (2003). Small Fatigue Cracks. In I. Milne, R. Ritchie, & B. Karihaloo (Eds.), Comprehensive structural integrity (pp. 129–164). Pergamon. https://doi.org/10.1016/B0-08-043749-4/04073-8DavidsonD.ChanK.McClungR.HudakS. (2003). Small Fatigue Cracks. In I.MilneR.RitchieB.Karihaloo (Eds.), Comprehensive structural integrity (pp. 129–164). Pergamon. https://doi.org/10.1016/B0-08-043749-4/04073-8Search in Google Scholar
Dirgantara, T., & Aliabadi, M. (2001). Dual boundary element formulation for fracture mechanics analysis of shear deformable shells. International Journal of Solids and Structures, 38(44), 7769–7800. https://doi.org/10.1016/S0020-7683(01)00097-XDirgantaraT.AliabadiM. (2001). Dual boundary element formulation for fracture mechanics analysis of shear deformable shells. International Journal of Solids and Structures, 38(44), 7769–7800. https://doi.org/10.1016/S0020-7683(01)00097-XSearch in Google Scholar
Dirgantara, T., & Aliabadi, M. (2002). Stress intensity factors for cracks in thin plates. Engineering Fracture Mechanics, 69(13), 1465–1486. https://doi.org/10.1016/S0013-7944(01)001369DirgantaraT.AliabadiM. (2002). Stress intensity factors for cracks in thin plates. Engineering Fracture Mechanics, 69(13), 1465–1486. https://doi.org/10.1016/S0013-7944(01)001369Search in Google Scholar
Forrester, A., Sobester, A., & Keane, A. (2008, July). Engineering design via surrogate modelling: A practical guide. https://doi.org/10.1002/9780470770801ForresterA.SobesterA.KeaneA. (2008, July). Engineering design via surrogate modelling: A practical guide. https://doi.org/10.1002/9780470770801Search in Google Scholar
Kitagawa, H., & Takahashi, S. (1976). Applicability of fracture mechanics to very small cracks or cracks in the early stage. Proceedings of the Second International Conference on Mechanical Behavior of Materials, 627–631.KitagawaH.TakahashiS. (1976). Applicability of fracture mechanics to very small cracks or cracks in the early stage. Proceedings of the Second International Conference on Mechanical Behavior of Materials, 627–631.Search in Google Scholar
Koh, C. G., & See, L. M. (1994). Identification and uncertainty estimation of structural parameters. Journal of Engineering Mechanics, 120(6),1219–1236. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:6(1219)KohC. G.SeeL. M. (1994). Identification and uncertainty estimation of structural parameters. Journal of Engineering Mechanics, 120(6),1219–1236. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:6(1219)Search in Google Scholar
Kurchin, R., Romano, G., & Buonassisi, T. (2019). Bayesim: A tool for adaptive grid model fitting with Bayesian inference. Computer Physics Communications, 239, 161–165. https://doi.org/10.1016/j.cpc.2019.01.022KurchinR.RomanoG.BuonassisiT. (2019). Bayesim: A tool for adaptive grid model fitting with Bayesian inference. Computer Physics Communications, 239, 161–165. https://doi.org/10.1016/j.cpc.2019.01.022Search in Google Scholar
Larrosa, N., Chaves, V., Navarro, A., & Ainsworth, R. (2017). Application of the microstructural finite element alternating method to assess the impact of specimen size and distributions of contact/residual stress fields on fatigue strength. Computers & Structures, 179, 15–26. https://doi.org/10.1016/j.compstruc.2016.10.011LarrosaN.ChavesV.NavarroA.AinsworthR. (2017). Application of the microstructural finite element alternating method to assess the impact of specimen size and distributions of contact/residual stress fields on fatigue strength. Computers & Structures, 179, 15–26. https://doi.org/10.1016/j.compstruc.2016.10.011Search in Google Scholar
Larrosa, N., Navarro, A., & Chaves, V. (2015). Calculating fatigue limits of notched components of arbitrary size and shape with cracks growing in mode I. International Journal of Fatigue, 74, 142–155. https://doi.org/10.1016/j.ijfatigue.2015.01.002LarrosaN.NavarroA.ChavesV. (2015). Calculating fatigue limits of notched components of arbitrary size and shape with cracks growing in mode I. International Journal of Fatigue, 74, 142–155. https://doi.org/10.1016/j.ijfatigue.2015.01.002Search in Google Scholar
Maierhofer, J., Gänser, H.-P., & Pippan, R. (2015). Modified Kitagawa–Takahashi diagram accounting for finite notch depths. International Journal of Fatigue, 70, 503–509. https://doi.org/10.1016/j.ijfatigue.2014.07.007MaierhoferJ.GänserH.-P.PippanR. (2015). Modified Kitagawa–Takahashi diagram accounting for finite notch depths. International Journal of Fatigue, 70, 503–509. https://doi.org/10.1016/j.ijfatigue.2014.07.007Search in Google Scholar
Makeev, A., Nikishkov, Y., & Armanios, E. (2007). A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models. International Journal of Fatigue, 29, 141–145. https://doi.org/10.1016/j.ijfatigue.2006.01.018MakeevA.NikishkovY.ArmaniosE. (2007). A concept for quantifying equivalent initial flaw size distribution in fracture mechanics based life prediction models. International Journal of Fatigue, 29, 141–145. https://doi.org/10.1016/j.ijfatigue.2006.01.018Search in Google Scholar
Miedlar, P., Berens, A., Gunderson, A., & Gallagher, J. (2002). Analysis and support initiative for structural technology (ASIST) –d Delivery order 0016: USAF damage tolerant design handbook: Guidelines for the analysis and design of damage tolerant aircraft structures, 835. https://apps.dtic.mil/sti/tr/pdf/ADA411872.pdfMiedlarP.BerensA.GundersonA.GallagherJ. (2002). Analysis and support initiative for structural technology (ASIST) –d Delivery order 0016: USAF damage tolerant design handbook: Guidelines for the analysis and design of damage tolerant aircraft structures, 835. https://apps.dtic.mil/sti/tr/pdf/ADA411872.pdfSearch in Google Scholar
Morse, L., Khodaei, Z. S., & Aliabadi, M. H. (2017). Multi-fidelity modeling-based structural reliability analysis with the boundary element method. Journal of Multiscale Modelling, 08(03n04), 1740001. https://doi.org/10.1142/S1756973717400017MorseL.KhodaeiZ. S.AliabadiM. H. (2017). Multi-fidelity modeling-based structural reliability analysis with the boundary element method. Journal of Multiscale Modelling, 08(03n04), 1740001. https://doi.org/10.1142/S1756973717400017Search in Google Scholar
Morse, L., Khodaei, Z. S., & Aliabadi, M. H. (2020). Statistical inference of the equivalent initial flaw size for assembled plate structures with the dual boundary element method. Engineering Fracture Mechanics, 238, 107271. https://doi.org/10.1016/j.engfracmech.2020.107271MorseL.KhodaeiZ. S.AliabadiM. H. (2020). Statistical inference of the equivalent initial flaw size for assembled plate structures with the dual boundary element method. Engineering Fracture Mechanics, 238, 107271. https://doi.org/10.1016/j.engfracmech.2020.107271Search in Google Scholar
Navarro, A., & de los Rios, E. R. (1988). Short and long fatigue crack growth: A unified model. Philosophical Magazine A, 57(1), 15–36. https://doi.org/10.1080/01418618808204496NavarroA.de los RiosE. R. (1988). Short and long fatigue crack growth: A unified model. Philosophical Magazine A, 57(1), 15–36. https://doi.org/10.1080/01418618808204496Search in Google Scholar
Paris, P., & Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85(4), 528–534. https://doi.org/10.1115/1.3656900ParisP.ErdoganF. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85(4), 528–534. https://doi.org/10.1115/1.3656900Search in Google Scholar
Portela, A., Aliabadi, M. H., & Rooke, D. P. (1992). The dual boundary element method: Effective implementation for crack problems. International Journal for Numerical Methods in Engineering, 36(6), 1269–1287. https://doi.org/10.1002/nme.1620330611PortelaA.AliabadiM. H.RookeD. P. (1992). The dual boundary element method: Effective implementation for crack problems. International Journal for Numerical Methods in Engineering, 36(6), 1269–1287. https://doi.org/10.1002/nme.1620330611Search in Google Scholar
Sankararaman, S., Ling, Y., & Mahadevan, S. (2010). Statistical inference of equivalent initial flaw size with complicated structural geometry and multi-axial variable amplitude loading. International Journal of Fatigue, 32(10), 1689–1700. https://doi.org/10.1016/j.ijfatigue.2010.03.012SankararamanS.LingY.MahadevanS. (2010). Statistical inference of equivalent initial flaw size with complicated structural geometry and multi-axial variable amplitude loading. International Journal of Fatigue, 32(10), 1689–1700. https://doi.org/10.1016/j.ijfatigue.2010.03.012Search in Google Scholar
Sankararaman, S., Ling, Y., Shantz, C., & Mahadevan, S. (2011). Uncertainty quantification in fatigue crack growth prognosis. International Journal of Prognostics and Health Management, 2. https://doi.org/10.36001/ijphm.2011.v2i1.1338SankararamanS.LingY.ShantzC.MahadevanS. (2011). Uncertainty quantification in fatigue crack growth prognosis. International Journal of Prognostics and Health Management, 2. https://doi.org/10.36001/ijphm.2011.v2i1.1338Search in Google Scholar
Soni, S. J., Kale, B. S., Chavan, N. C., & Kadam, S. T. (2014). Stress analysis of door and window of boeing 787 passenger aircraft subjected to biaxial loading [IJERTV3IS031482]. International Journal of Engineering Research & Technology (IJERT), 3(3), 2252–2256. https://www.ijert.org/stress-analysis-of-door-and-window-of-boeing-787-passenger-aircraft-subjected-to-biaxial-loadingSoniS. J.KaleB. S.ChavanN. C.KadamS. T. (2014). Stress analysis of door and window of boeing 787 passenger aircraft subjected to biaxial loading [IJERTV3IS031482]. International Journal of Engineering Research & Technology (IJERT), 3(3), 2252–2256. https://www.ijert.org/stress-analysis-of-door-and-window-of-boeing-787-passenger-aircraft-subjected-to-biaxial-loadingSearch in Google Scholar
Wen, P., Aliabadi, M., & Young, A. (1999). Transformation of domain integrals to boundary integrals in BEM analysis of shear deformable plate bending problems. Computational Mechanics, 24, 304–309. https://doi.org/10.1007/s004660050519WenP.AliabadiM.YoungA. (1999). Transformation of domain integrals to boundary integrals in BEM analysis of shear deformable plate bending problems. Computational Mechanics, 24, 304–309. https://doi.org/10.1007/s004660050519Search in Google Scholar
Wood, H. A., & Engle, R. M. E. (1979). USAF damage tolerant design handbook: Guidelines for the analysis and design of damage tolerant aircraft structures (Tech. Rep. No. AFFDL-TR-79-3021). Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base. Wright-Patterson AFB, Ohio. https://apps.dtic.mil/sti/tr/pdf/ADA078216.pdfWoodH. A.EngleR. M. E. (1979). USAF damage tolerant design handbook: Guidelines for the analysis and design of damage tolerant aircraft structures (Tech. Rep. No. AFFDL-TR-79-3021). Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base. Wright-Patterson AFB, Ohio. https://apps.dtic.mil/sti/tr/pdf/ADA078216.pdfSearch in Google Scholar
Zhuang, M., Morse, L., Sharif Khodaei, Z., & Aliabadi, M. (2024). Bayesian-informed fatigue life prediction in shallow shell structures with the dual boundary element method. Engineering Fracture Mechanics, 308, 110348. https://doi.org/10.1016/j.engfracmech.2024.110348ZhuangM.MorseL.Sharif KhodaeiZ.AliabadiM. (2024). Bayesian-informed fatigue life prediction in shallow shell structures with the dual boundary element method. Engineering Fracture Mechanics, 308, 110348. https://doi.org/10.1016/j.engfracmech.2024.110348Search in Google Scholar