Zacytuj

Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD. XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Molecular Cell 27, 53–66, 2007. Search in Google Scholar

Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luis A, McCarthy N, Montibeller L, More S, Papaioannou A, Puschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Munoz-Pinedo C, Rehm M, Chevet E, Samali A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 286, 241–278, 2019. Search in Google Scholar

Auf G, Jabouille A, Guerit S, Pineau R, Delugin M, Bouchecareilh M, Favereaux A, Maitre M, Gaiser T, von Deimling A, Czabanka M, Vajkoczy P, Chevet E, Bikfalvi A, Moenner M. A shift from an angiogenic to invasive phenotype induced in malignant glioma by inhibition of the unfolded protein response sensor IRE1. Proc Natl Acad Sci USA 107, 15553–15558, 2010. Search in Google Scholar

Auf G, Jabouille A, Delugin M, Guerit S, Pineau R, North S, Platonova N, Maitre M, Favereaux A, Vajkoczy P, Seno M, Bikfalvi A, Minchenko D, Minchenko O, Moenner M. High epiregulin expression in human U87 glioma cells relies on IRE1alpha and promotes autocrine growth through EGF receptor. BMC Cancer 13, 597, 2013. Search in Google Scholar

Avril T, Vauleon E, Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 6, e373, 2017. Search in Google Scholar

Bravo R, Parra V, Gatica D, Rodriguez AE, Torrealba N, Paredes F, Wang ZV, Zorzano A, Hill JA, Jaimovich E, Quest AF, Lavandero S. Endoplasmic reticulum and the unfolded protein response: dynamics and metabolic integration. Int Rev Cell Mol Biol 301, 215–290, 2013. Search in Google Scholar

Chevet E, Hetz C, Samali A. Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov 5, 586–597, 2015. Search in Google Scholar

Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumor. Nat Rev Cancer 8, 705–713, 2008. Search in Google Scholar

Ding R, Hong W, Huang L, Shao J, Yu W, Xu X. Examination of the effects of microRNA-145-5p and phosphoserine aminotransferase 1 in colon cancer. Bioengineered 13, 12794–12806, 2022. Search in Google Scholar

Doultsinos D, Avril T, Lhomond S, Dejeans N, Guedat P, Chevet E. Control of the unfolded protein response in health and disease. SLAS Discov 22, 787–800, 2017. Search in Google Scholar

Engel AL, Lorenz NI, Klann K, Munch C, Depner C, Steinbach JP, Ronellenfitsch MW, Luger AL. Serine-dependent redox homeostasis regulates glioblastoma cell survival. Br J Cancer 122, 1391–1398, 2020. Search in Google Scholar

Gao S, Ge A, Xu S, You Z, Ning S, Zhao Y, Pang D. PSAT1 is regulated by ATF4 and enhances cell proliferation via the GSK3beta/beta-catenin/cyclin D1 signaling pathway in ER-negative breast cancer. J Exp Clin Cancer Res 36, 179, 2017. Search in Google Scholar

Hennequart M, Labuschagne CF, Tajan M, Pilley SE, Cheung EC, Legrave NM, Driscoll PC, Vousden KH. The impact of physiological metabolite levels on serine uptake, synthesis and utilization in cancer cells. Nat Commun 12, 6176, 2021. Search in Google Scholar

Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21, 421–438, 2020. Search in Google Scholar

Itoyama R, Yasuda-Yoshihara N, Kitamura F, Yasuda T, Bu L, Yonemura A, Uchihara T, Arima K, Hu X, Jun Z, Okamoto Y, Akiyama T, Yamashita K, Nakao Y, Yusa T, Kitano Y, Higashi T, Miyata T, Imai K, Hayashi H, Yamashita YI, Mikawa T, Kondoh H, Baba H, Ishimoto T. Metabolic shift to serine biosynthesis through 3-PG accumulation and PHGDH induction promotes tumor growth in pancreatic cancer. Cancer Lett 523, 29–42, 2021. Search in Google Scholar

Jin L, Kiang KM, Cheng SY, Leung GK. Pharmacological inhibition of serine synthesis enhances temozolomide efficacy by decreasing O(6)-methylguanine DNA methyltransferase (MGMT) expression and reactive oxygen species (ROS)-mediated DNA damage in glioblastoma. Lab Invest 102, 194–203, 2022. Search in Google Scholar

Li AM, Ye J. Reprogramming of serine, glycine and one-carbon metabolism in cancer. Biochim Biophys Acta Mol Basis Dis 1866, 165841, 2020. Search in Google Scholar

Li X, Gracilla D, Cai L, Zhang M, Yu X, Chen X, Zhang J, Lon X, Ding H-F, Yan C. ATF3 dietary serine restriction. Cell Rep 36, 109706, 2021. Search in Google Scholar

Liao L, Ge M, Zhan Q, Huang R, Ji X, Liang X, Zhou X. PSPH mediates the metastasis and proliferation of non-small cell lung cancer through MAPK signaling pathways. Int J Biol Sci 15, 183–194, 2019. Search in Google Scholar

Logue SE, McGrath EP, Cleary P, Greene S, Mnich K, Almanza A, Chevet E, Dwyer RM, Oommen A, Legembre P, Godey F, Madden EC, Leuzzi B, Obacz J, Zeng Q, Patterson JB, Jager R, Gorman AM, Samali A. Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nat Commun 9, 3267, 2018. Search in Google Scholar

Luo X, Ge J, Liu J, Liu Z, Bi C, Lan S. TFCP2, a binding protein of ATF3, promotes the progression of glioma by activating the synthesis of serine. Exp Cell Res 416, 113136, 2022. Search in Google Scholar

Manie SN, Lebeau J, Chevet E. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. Am J Physiol Cell Physiol 307, C901–C907, 2014. Search in Google Scholar

Mattaini KR, Sullivan MR, Vander Heiden MG. The importance of serine metabolism in cancer. J Cell Biol 214, 249–257, 2016. Search in Google Scholar

Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci 39, 245–254, 2014. Search in Google Scholar

Minchenko A, Caro J. Regulation of endothelin-1 gene expression in human microvascular endothelial cells by hypoxia and cobalt: role of hypoxia responsible element. Mol Cell Biochem 208, 5362, 2000. Search in Google Scholar

Minchenko A, Leshchinsky I, Opentanova I, Sang N, Srinivas V, Armstead V, Caro J. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem 277, 6183–6187, 2002. Search in Google Scholar

Minchenko DO, Kharkova AP, Hubenia OV, Minchenko OH. Insulin receptor, IRS1, IRS2, INSIG1, INSIG2, RRAD, and BAIAP2 gene expressions in glioma U87 cells with ERN1 loss of function: effect of hypoxia and gluta-mine or glucose deprivation. Endocr Regul 47, 15–26, 2013. Search in Google Scholar

Minchenko OH, Tsymbal DO, Moenner M, Minchenko DO, Kovalevska OV, Lypova NM. Inhibition of the endoribonuclease of ERN1 signaling enzyme affects the expression of proliferation-related genes in U87 glioma cells. Endoplasm Reticul Stress Dis 2, 18–29, 2015a. Search in Google Scholar

Minchenko OH, Tsymbal DO, Minchenko DO, Kovalevska OV, Karbovskyi LL, Bikfalvi A. Inhibition of ERN1 signaling enzyme affects hypoxic regulation of the expression of E2F8, EPAS1, HOXC6, ATF3, TBX3 and FOXF1 genes in U87 glioma cells. Ukr Biochem J 87, 76–87, 2015b. Search in Google Scholar

Minchenko DO, Tsymbal DO, Riabovol OO, Viletska YM, Lahanovska YO, Sliusar MY, Bezrodnyi BH, Minchenko OH. Hypoxic regulation of EDN1, EDNRA, EDNRB, and ECE1 gene expressions in IRE1 knockdown U87 glioma cells. Endocr Reg 53, 250–262, 2019. Search in Google Scholar

Minchenko DO, Khita OO, Tsymbal DO, Danilovskyi SV, Rudnytska OV, Halkin OV, Kryvdiuk IV, Smeshkova MV, Yakymchuk MM, Bezrodnyi BH, Minchenko OH. Expression of IDE and PITRM1 genes in IRE1 knockdown U87 glioma cells: effect of hypoxia and glucose deprivation. Endocr Reg 54, 183–195, 2020. Search in Google Scholar

Minchenko OH, Tsymbal DO, Khita OO, Minchenko DO. Inhibition of ERN1 signaling is important for the suppression of tumor growth. Clin Cancer Drugs 8, 27–38, 2021. Search in Google Scholar

Obacz J, Avril T, Le Reste PJ, Urra H, Quillien V, Hetz C, Chevet E. Endoplasmic reticulum proteostasis in glioblastoma-from molecular mechanisms to therapeutic perspectives. Sci Signal 10, eaal2323, 2017. Search in Google Scholar

Papaioannou A, Chevet E. Driving cancer tumorigenesis and metastasis through UPR signaling. Curr Top Microbiol Immunol 414, 159–192, 2018. Search in Google Scholar

Park SM, Seo EH, Bae DH, Kim SS, Kim J, Lin W, Kim KH, Park JB, Kim YS, Yin J, Kim SY. Phosphoserine phosphatase promotes lung cancer progression through the dephosphorylation of IRS-1 and a noncanonical L-serine-independent pathway. Mol Cells 42, 604–616, 2019. Search in Google Scholar

Pikman Y, Ocasio-Martinez N, Alexe G, Dimitrov B, Kitara S, Diehl FF, Robichaud AL, Conway AS, Ross L, Su A, Ling F, Qi J, Roti G, Lewis CA, Puissant A, Vander Heiden MG, Stegmaier K. Targeting serine hydroxymethyltransferases 1 and 2 for T-cell acute lymphoblastic leukemia therapy. Leukemia 36, 348–360, 2022. Search in Google Scholar

Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350, 2011. Search in Google Scholar

Rathore R, Schutt CR, Van Tine BA. PHGDH as a mechanism for resistance in metabolically-driven cancers. Cancer Drug Resist 3, 762–774, 2020. Search in Google Scholar

Rawat V, Malvi P, Della Manna D, Yang ES, Bugide S, Zhang X, Gupta R, Wajapeyee N. PSPH promotes melanoma growth and metastasis by metabolic deregulation-mediated transcriptional activation of NR4A1. Oncogene 40, 2448–2462, 2021. Search in Google Scholar

Reid MA, Allen AE, Liu S, Liberti MV, Liu P, Liu X, Dai Z, Gao X, Wang Q, Liu Y, Lai L, Locasale JW. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat Commun 9, 5442, 2018. Search in Google Scholar

Rudnytska OV, Khita OO, Minchenko, Tsymbal DO, Yefimova YV, Sliusar MY, Minchenko OH. The low doses of SWCNTs exhibit a genotoxic effect on the normal human astrocytes by disrupting the functional integrity of the genome. Curr Res Toxicol 2, 64–71, 2021. Search in Google Scholar

Semenza GL. A compendium of proteins that interact with HIF-1α. Exp Cell Res 356, 128–135, 2017. Search in Google Scholar

Sun RC, Denko NC. Hypoxic regulation of glutamine metabolism through HIF1 and SIAH2 supports lipid synthesis that is necessary for tumor growth. Cell Metab 19, 285–292, 2014. Search in Google Scholar

Tajan M, Hennequart M, Cheung EC, Zani F, Hock AK, Legrave N, Maddocks ODK, Ridgway RA, Athineos D, Suarez-Bonnet A, Ludwig RL, Novellasdemunt L, Angelis N, Li VSW, Vlachogiannis G, Valeri N, Mainolfi N, Suri V, Friedman, Manfredi M, Blyth K, Sansom OJ, Vousden KH. Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat Commun 12, 366, 2021. Search in Google Scholar

Vie N, Copois V, Bascoul-Mollevi C, Denis V, Bec N, Robert B, Fraslon C, Conseiller E, Molina F, Larroque C, Martineau P, Del Rio M, Gongora C. Overexpression of phosphoserine aminotransferase PSAT1 stimulates cell growth and increases chemoresistance of colon cancer cells. Mol Cancer 7, 14, 2008. Search in Google Scholar

Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16, 650–662, 2016. Search in Google Scholar

Zhao X, Fu J, Du J, Xu W. The role of D-3-phosphoglycerate dehydrogenase in cancer. Int J Biol Sci 16, 1495–1506, 2020. Search in Google Scholar

eISSN:
1336-0329
Język:
Angielski