Otwarty dostęp

Proportion of Root Production in Several Temperate Grasslands of Central Europe


Zacytuj

Andrzejewska, L. (1991). Root production of some grass communities on peat soil in river valleys of Biebrza and Narew. Polish Ecological Studies, 17, 63-72.Search in Google Scholar

Bakker, M.R., Augusto, L. & Achat D.L. (2006). Fine root distribution of trees and understory in mature stands of marine pine (Pinuspinaster) on dry and humid sites. Plant Soil, 286, 37-51. DOI: 10.1007/s11104-006-9024-4.10.1007/s11104-006-9024-4Search in Google Scholar

Fay, P.A., Kaufman, D.M., Nippert, J.B., Carlisle, J.D. & Harper C.W. (2008). Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Global Change Biology, 14, 1600-1608. DOI: 10.1111/j.1365-2486.2008.01605.x.10.1111/j.1365-2486.2008.01605.xSearch in Google Scholar

Fiala, K. (1993). Underground biomass in meadow stands. In M. Rychnovská (Ed.), Functioning of meadow ecosystems (pp. 133-153). Praha: Academia.Search in Google Scholar

Fiala, K. (1997). Underground plant biomass of grassland communities in relation to mowing intensity. Acta Scien-tarium Naturalium Academiae Scientarium Bohemicae Brno, 31, 1-54.Search in Google Scholar

Fiala, K. (1998). Variation in belowground biomass of grass stands in deforested areas affected by air pollution in the Beskydy Mts. Ekológia (Bratislava), 17(Suppl. 1), 256-278.Search in Google Scholar

Fiala, K. (2000). Root and rhizome growth of grasses Calamagrostis arundinacea and C. villosa on deforested sites in response to pollution and climatic impacts. Biologia, 55, 91-98.Search in Google Scholar

Fiala, K. (2001). The role of root system of Calamagrostis epigejos in its successful expansion in alluvial meadows. Ekológia (Bratislava), 20, 292-300.Search in Google Scholar

Fiala, K., Záhora, J., Tûma, I. & Holub P. (2004). Importance of plant matter accumulation, nitrogen uptake and utilization in expansion of tall grasses (Calamagrostis epigejos and Arrhenatherum elatius) into acidophilous dry grassland. Ekológia (Bratislava), 23, 225-240.Search in Google Scholar

Fiala, K., Tûma, I. & Holub P. (2009). Effect of manipulated rainfall on root production and plant belowground dry mass of different grassland ecosystems. Ecosystems, 12, 906-914. DOI: 10.1007/s10021-009-9264-2.10.1007/s10021-009-9264-2Search in Google Scholar

Fiala, K. (2010). Belowground plant biomass of grassland ecosystems and its variation according to ecological factors. Ekológia (Bratislava), 29, 182-206. DOI: 10.4149/ekol_2010_02_182.10.4149/ekol_2010_02_182Search in Google Scholar

Fiala, K., Tûma, I. & Holub P. (2012). Interannual variation in root production in grasslands affected by artificially modified amount ofrainfall. The Scientific World Journal, Article ID 805298, 10 pages. DOI: 10.1100/2012/805298.10.1100/2012/805298335356322629201Search in Google Scholar

Fitter, A.H., Graves, J.D., Self, G.K. & Brown T.K. (1998). Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. Oecologia, 114, 2030. DOI: 10.1007/s004420050415.10.1007/s00442005041528307553Search in Google Scholar

Gill, R.A. & Jackson R.B. (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytol., 147, 13-31. DOI: 10.1046/j.1469-8137.2000.00681.x.10.1046/j.1469-8137.2000.00681.xSearch in Google Scholar

Gill, R.A., Kelly, R.H., Parton, W.J., Day, K.A., Jackson, R.B., Morgan, J.A., Scurlock, J.M.O., Tieszen, L.L., Castle, J.V., Okima, D.S. & Zhang X.S. (2002): Using simple environmental variables to estimate belowground productivity in grasslands. Glob. Ecol. Biogeogr., 11, 79-86. DOI: 10.1046/j.1466-822X.2001.00267.x.10.1046/j.1466-822X.2001.00267.xSearch in Google Scholar

Hayes, D.C. & Seastedt T.R. (1987). Root dynamics of tallgrass prairie in wet and dry years. Can. J. Bot., 65, 787-791. DOI: 10.1139/b87-105.10.1139/b87-105Search in Google Scholar

Holub, P. (2002). The expansion of Calamagrostis epigejos into alluvial meadows: comparison of aboveground biomass in relation to water regimes. Ekológia (Bratislava), 21, 27-37.Search in Google Scholar

Holub, P., Fabšičová, M., Tûma, I., Záhora, J. & Fiala K. (2013a). Effects of artificially varying amounts of rainfall on two semi-natural grassland types. J. Veg. Sci., 24(3), 518-529. DOI: 10.1111/j.1654-1103.2012.01487.x.10.1111/j.1654-1103.2012.01487.xSearch in Google Scholar

Holub, P., Tûma, I. & Fiala K. (2013b). Effect of fertilization on root growth of submontane Polygono-Cirsietum meadow. Plant, Soil and Environment, 59, 342-347.10.17221/162/2013-PSESearch in Google Scholar

Hrabe, F., Straka, J. & Rosická L. (2002). Produkční a strukturální zmeny polopŕirozeného a nove setého lučního společenstva v oblasti CHKO Žďárské vrchy. In V. Krajčovič. (Ed.), Ekológia trávneho porastu VI. (pp. 220-227). Banská Bystrica: Výskumný ústav trávnych porastov a horského poľnohospodárstva.Search in Google Scholar

Hui, D. & Jackson R.B. (2006). Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol., 169, 85-93. DOI: 10.1111/j.1469-8137.2005.01569.x.10.1111/j.1469-8137.2005.01569.x16390421Search in Google Scholar

Ibrahim, L., Proe, M.F. & Cameron A.D. (1997). Main effects of nitrogen supply and drought stress upon whole-plant carbon allocation in poplar. Can. J. For. Res., 27, 1413-1419. DOI: 10.1139/x97-080.10.1139/x97-080Search in Google Scholar

Jakrlová, J. (1971). Flooded meadow communities. An analysis of productivity in a dry year. Folia Geobot., 6, 1-27.10.1007/BF02851836Search in Google Scholar

Jakrlová, J. (1996). Variability of aboveground production of Calamagrostis villosa in localities exposed to emissions in the region of the Beskydy Mts. In K. Fiala (Ed.), Grass ecosystems of deforested areas in the Beskydy Mts (pp. 75-82). Brno: ASCR, Institute of Landscape Ecology.Search in Google Scholar

Köchy, M. & Wilson S.D. (2004). Semiarid grassland responses to short-term variation in water availability. Plant Ecol., 174, 197-203. DOI: 10.1023/B:VEGE.0000049098.74147.57.10.1023/B:VEGE.0000049098.74147.57Search in Google Scholar

Koppisch, D. (1994). Nährstoffhaushalt un Populationsdynamik von Calamagrostis villosa (Chais.) J.F. Gmel, einer Rhizompflanze des Unterwuchses von Fichtenwäldern. Bayreuther Forum Ökologie, 12, 1-187.Search in Google Scholar

Melillo, J.M., McGuire, A.D., Kicklighter, A.W., Moore, B.I., Vorosmary, C.J. & Schloss A.L. (1993). Global climate-change and terrestrial net primary production. Nature, 363, 234-240. DOI: 10.1038/363234a0.10.1038/363234a0Search in Google Scholar

Milchunas, D.G. (2012). Biases and errors associated with different root production methods and their effects on field estimates of belowground net primary production. In S. Mancuso (Ed.), Measuring roots: An updatedapproach (pp. 303-339). Berlin: Springer. DOI: 10.1007/978-3-642-22067-8_16.10.1007/978-3-642-22067-8_16Search in Google Scholar

Ni, J. (2004). Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecol., 174, 217-234. DOI: 10.1023/B:VEGE.0000049097.85960.10.10.1023/B:VEGE.0000049097.85960.10Search in Google Scholar

Pilát, A. (1969). Underground dry weight in the grassland communities of Arrhenatheretum elatioris alopecuretosum pratensis R. Tx. 1937 and Mesobrometum erecti stipetosum Vicherek 1960. Folia Geobot., 4, 225-234.10.1007/BF02854745Search in Google Scholar

Pyšek, P. (1993). What do we know about Calamagrostis villosa? A review of the species behaviour in secondary habitats. Preslia, 63, 9-20.Search in Google Scholar

Qaderi, M.M., Kurepin, L.V. & Reid D.M. (2006). Growth and physiological responses of canola (Brasica napus) to three components of global climate changes: Temperature, carbon dioxide and drought. Physiologia Plantarum, 128, 710-721. DOI: 10.1111/j.1399-3054.2006.00804.x.10.1111/j.1399-3054.2006.00804.xSearch in Google Scholar

Risch, A.C., Jurgensen, M.F. & Frank D.A. (2007). Effects of grazing and soil micro-climate on decomposition rates in a spatio-temporally heterogeneous grassland. Plant Soil, 298, 191-201. DOI: 10.1007/s11104-007-9354-x.10.1007/s11104-007-9354-xSearch in Google Scholar

Rychnovská, M. (1983). Grasslands: A multifunctional link between natural and man-made ecosystems. Ekológia (ČSSR), 2, 337-345.Search in Google Scholar

Stanton, N.L. (1988). The underground in grasslands. Annu. Rev. Ecol. Syst., 19, 573-589. DOI: 10.1146/annurev. es.19.110188.003041.Search in Google Scholar

Titlyanova, A.A., Romanova, I.P., Kosykh, N.P. & Mironycheva-Tokareva N.P. (1999). Pattern and process in above-ground and below-ground components of grassland ecosystems. J. Veg. Sci., 10, 307-320. DOI: 10.2307/3237060.10.2307/3237060Search in Google Scholar

Tomaškin, J. & Tomaškinová J. (2012). The ecological and environmental functions of grass ecosystems and their importance in the elimination of degradation processes in agricultural landscape. Carpathian Journal of Earth Environmental Sciences, 7, 71-78.Search in Google Scholar

Xu, X., Niu, Sh., Sherry, R.A., Zhou, X. & Zhou J. (2012). Interannual variability in responses of belowground net primary productivity (NPP) and NPP partitioning to long-term warming and clipping in a tallgrass prairie. Global Change Biology, 18, 1648-1656. DOI: 10.1111/j.1365-2486.2012.02651.x.10.1111/j.1365-2486.2012.02651.xSearch in Google Scholar

Yahdjian, L. & Sala O.E. (2006). Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology, 87, 952-962. DOI: 10.1890/0012-9658(2006)87[952:VSCPPR]2.0.CO.Search in Google Scholar

eISSN:
1337-947X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Ecology, other, Chemistry, Environmental Chemistry, Geosciences, Geography