Otwarty dostęp

Environmental Assessment of Solar Cell Materials


Zacytuj

Tyagi VV, Panwar NL, Rahim NA, Kothari R. Review on solar air heating system with and without thermal energy storage system. Renew Sust Energy Rev. 2012;16(4):2289-303. DOI: 10.1016/j.rser.2011.12.005. Open DOISearch in Google Scholar

Qian X, Yang Y, Lee SW, Caballes MJ, Alamu OS. Cooling performance analysis of the lab-scale hybrid oyster refrigeration system. Processes. 2020;8(8):899. DOI: 10.3390/pr8080899. Open DOISearch in Google Scholar

Singh DB, Mahajan A, Devli D, Bharti K, Kandari S, Mittal G. A mini review on solar energy based pumping system for irrigation. Materials Today: Proceedings. 2021;43:417-25. DOI: 10.1016/j.matpr.2020.11.716. Open DOISearch in Google Scholar

Li Y. A photovoltaic ecosystem: improving atmospheric environment and fighting regional poverty. Technol Forecasting Social Change. 2019;140:69-79. DOI: 10.1016/j.techfore.2018.12.002 Open DOISearch in Google Scholar

Photovoltaics Technology Development Report, Joint Research Centre (JRC), Luxembourg: Publications Office of the European Union, 2020. DOI: 10.2760/827685. Open DOISearch in Google Scholar

Tilli M, Paulasto-Krockel M, Petzold M, Theuss H, Motooka T, Lindroos V. Handbook of Silicon Based MEMS Materials and Technologies. Elsevier; 2010. ISBN: 9780128177877. Search in Google Scholar

Basore PA. Defining terms for crystalline silicon solar cells. Progress in Photovoltaics: Res Appl. 1994;2:177-9. DOI: 10.1002/pip.4670020213. Open DOISearch in Google Scholar

LaBelle Jr. HE, Mlavsky AI. Edge-defined, film-fed crystal growth. J Crystal Growth. 1972;13-14:84-7. DOI: 10.1016/0022-0248(72)90067-X. Open DOISearch in Google Scholar

Aberle AG. Thin-film solar cells. Thin Solid Films. 2009;517(17):4706-10. DOI: 10.1016/j.tsf.2009.03.056. Open DOISearch in Google Scholar

Hook JR, Hall HE. Solid State Physics. 2nd Edition, Part of: Manchester Physics; Wiley; 2013. ISBN: 9780471928058. Search in Google Scholar

O’Donnell KP, Chen X. Temperature dependence of semiconductor band gaps. Appl Phys Lett. 1991;58:2924-6. DOI: 10.1063/1.104723. Open DOISearch in Google Scholar

Kittel C. Introduction to Solid State Physics. 6th Ed. New York: John Wiley; 1986, p. 185. ISBN: 9780471874744. Search in Google Scholar

Yamaguchi M. High-Efficiency GaAs-Based Solar Cells, Post-Transition Metals. IntechOpen; 2021. DOI: 10.5772/intechopen.94365. Open DOISearch in Google Scholar

Crystalline Silicon Photovoltaics Research. Office of Energy Efficiency & Renewable Energy 2021. Available from: https://www.energy.gov/eere/solar/crystalline-silicon-photovoltaics-research. Search in Google Scholar

Korun M. Navruz TS. J Phys. Conf Series. 2016;707:012035. DOI: 10.1088/1742-6596/707/1/012035. Open DOISearch in Google Scholar

Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress Photovoltaics: Res Appl. 2011;19(7):894-7. DOI: 10.1002/pip.1078. Open DOISearch in Google Scholar

Kroll U, Bucher C, Benagli S, Schönbächler I, Meier J, et al. High-efficiency p-i-n a-Si:H solar cells with low boron cross-contamination prepared in a large-area single-chamber PECVD reactor. Thin Solid Films. 2004;451-452:525-30. DOI: 10.1016/j.tsf.2003.11.036. Open DOISearch in Google Scholar

Haloui H, Touafek K, Zaabat M, Khelifa A. The Copper Indium Selenium (CuInSe2) thin films solar cells for Hybrid Photovoltaic Thermal Collectors (PVT). Energy Procedia. 2015;74:1213-9. DOI: 10.1016/j.egypro.2015.07.765. Open DOISearch in Google Scholar

Belghachi A, Limam N. Effect of the absorber layer band-gap on CIGS solar cell. Chinese J Phys Taipei. 2017;55(4). DOI: 10.1016/j.cjph.2017.01.011. Open DOISearch in Google Scholar

Gul M, Kotak Y, Muneer T. Review on recent trend of solar photovoltaic technology. Energy Explor Exploit. 2016;34:485-526. DOI: 10.1177/0144598716650552. Open DOISearch in Google Scholar

Photovoltaics Report. Prepared by Fraunhofer Institute for Solar Energy Systems, ISE with support of PSE Projects GmbH, Freiburg; 2020. Available from: www.ise.fraunhofer.de. Search in Google Scholar

Dobrotkova Z, Goodrich A, Mackay M, Philibert C, Simbolotti G, Wenhua X. Cost Analysis of Solar Photovoltaics. International Renewable Energy Agency (IRENA) 2012. Available from: https://www.irena.org/publications/2012/Jun/Renewable-Energy-Cost-Analysis---Solar-Photovoltaics. Search in Google Scholar

Svarc J. Solar Panel Efficiency, Clean Energy Reviews 2021. Available from: https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels (accessed 21.12.2022). Search in Google Scholar

Fthenakis VM, Kim HC. Photovoltaics: Life-cycle analyses. Solar Energy. 2011;85:1609-28. DOI: 10.1016/j.solener.2009.10.002. Open DOISearch in Google Scholar

Summers K, Radde J. Potential Health and Environmental Impacts Associated with the Manufacture and Use of Photovoltaic Cells. PIER Final Project Report. Tetra Tech, Inc.; 2004. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.439.1726&rep=rep1&type=pdf. Search in Google Scholar

Fthenakis VM. End-of-life management and recycling of PV modules. Energy Policy 2000;28:1051-8. DOI: 10.1016/S0301-4215(00)00091-4. Open DOISearch in Google Scholar

Hill R, Baumann AE. Environmental cost of photovoltaic. IEE Proc. Part A: Science. Measurement Technol. 1993;140:76-80. DOI: 10.1049/ip-a-3.1993.0013. Open DOISearch in Google Scholar

Andersson BA, Azar C, Holmberg J, Karlsson S. Material constraints for thin-film solar cells. Energy. 1998;23(5):407-11. DOI: 10.1016/S0360-5442(97)00102-3. Open DOISearch in Google Scholar

© 2020 The World Bank, Source: Global Solar Atlas 2.0, Solar resource data: Solargis. Available from: https://solargis.com/maps-and-gis-data/download/world. Search in Google Scholar

Klugmann-Radziemska E, Kuczyńska-Łażewska A. The use of recycled semiconductor material in crystalline silicon photovoltaic modules production - a life cycle assessment of environmental impacts. Solar Energy Materials Solar Cells. 2020;205:1-9. DOI: 10.1016/j.solmat.2019.110259. Open DOISearch in Google Scholar

Alsema EA, Nieuwlaar E. Energy viability of photovoltaic systems. Energy Policy. 2000;28:999-1010. DOI: 10.1016/S0301-4215(00)00087-2. Open DOISearch in Google Scholar

Zhang T, Wang M, Yang H. A review of the energy performance and life-cycle assessment of building-integrated photovoltaic (BIPV) systems. Energies. 2018;11:3157. DOI: 10.3390/en11113157. Open DOISearch in Google Scholar

Gómez González L, Fernández de Mera Y, Rico A, Broseta Sancho A. Comparison of the Life Cycle Assessment of Photovoltaic Modules Made of Different Solar-cells Technologies. 25th European Solar Energy Conf. Valencia. 2010. DOI: 10.4229/25thEUPVSEC2010-4BV.1.70. Open DOISearch in Google Scholar

End-of-Life Management of Photovoltaic Panels: Trends in PV Module Recycling Technologies, IEA PVPS Task12, Subtask 1, Recycling Report IEA-PVPS T12-10:2018. January 2018. Available from: https://www.researchgate.net/publication/324703321_Task_12_End-of-Life_Management_of_Photovoltaic_Panels_Trends_in_PV_Module_Recycling_Technologies. Search in Google Scholar

Directive 2012/19/EU of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Available from: https://environment.ec.europa.eu/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en. Search in Google Scholar

Greenhouse gas emission intensity of electricity generation, Available from: https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-12/#tab-googlechartid_chart_11 (accessed 03.04.2023). Search in Google Scholar

Cheng Y, Jichao X. Model of environmental management science based on circular economy theory. Ecol Chem Eng S. 2021;28(4):513-24. DOI: 10.2478/eces-2021-0034. Open DOISearch in Google Scholar

eISSN:
2084-4549
Język:
Angielski