Zacytuj

[1] Crutzen PJ, Wacławek S. Atmospheric Chemistry and Climate in the Anthropocene. Chem Didact Ecol Metrol. 2014;19:9-28. DOI: 10.1515/cdem-2014-0001.10.1515/cdem-2014-0001 Search in Google Scholar

[2] Simionescu M, Szeles MR, Gavurova B, Mentel U. The impact of quality of governance, renewable energy and foreign direct investment on sustainable development in CEE countries. Front Environ Sci. 2021;9:425. DOI: 10.3389/FENVS.2021.765927/BIBTEX.10.3389/fenvs.2021.765927 Search in Google Scholar

[3] European Commission and Directorate - General for Research and Innovation. ERA industrial technology roadmap for low-carbon technologies in energy-intensive industries. 2022. Available from: https://research-and-innovation.ec.europa.eu/knowledge-publications-tools-and-data/publications/all-publications/era-industrial-technology-roadmap-low-carbon-technologies-energy-intensive-industries_en. Search in Google Scholar

[4] EIT Climate-KIC will help 100 European cities to achieve climate neutrality 2022. Available from: https://eit.europa.eu/news-events/news/eit-climate-kic-will-help-100-european-cities-achieve-climate-neutrality?pk_campaign=Newsletter-07-06-2022_12-10&pk_kwd=eit.europa.eu/news-events/news/eit-climate-kic-will-help-100-european-cities-achieve-climate-neu [accessed July 23, 2022]. Search in Google Scholar

[5] European Commission, REPowerEU: affordable, secure and sustainable energy for Europe. Eur Com. 2022. Available from: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/repowereu-affordable-secure-and-sustainable-energy-europe [accessed July 23, 2022]. Search in Google Scholar

[6] Teixeira JE, Tavares-Lehmann ATCP. Industry 4.0 in the European Union: Policies and national strategies. Technol Forecast Soc Change. 2022;180:121664. DOI: 10.1016/J.TECHFORE.2022.121664.10.1016/j.techfore.2022.121664 Search in Google Scholar

[7] Alexa L, Pîslaru M, Avasilcăi S. From Industry 4.0 to Industry 5.0 - An Overview of European Union Enterprises. 2022:221-31. DOI: 10.1007/978-981-16-7365-8_8.10.1007/978-981-16-7365-8_8 Search in Google Scholar

[8] Lorenz M, Lüers M, Ludwig M, Rees S, Rauen H, Zelinger M, et al. Grüne Technologien für grünes Geschäft 2020. Available from: https://web-assets.bcg.com/cd/51/bf13805d4de4a570010010b3dca4/for-machinery-makers-green-tech-creates-green-business-de.pdf [accessed June 29, 2022]. Search in Google Scholar

[9] Doyle-Kent M, Kopacek P. Industry 5.0: Is the manufacturing industry on the cusp of a new revolution? Lect Notes Mech Eng. 2020:432-41. DOI: 10.1007/978-3-030-31343-2_38/COVER/.10.1007/978-3-030-31343-2_38 Search in Google Scholar

[10] Zhang L, Xu M, Chen H, Li Y, Chen S. Globalization, green economy and environmental challenges: State of the art review for practical implications. Front Environ Sci. 2022;10:199. DOI: 10.3389/FENVS.2022.870271/BIBTEX.10.3389/fenvs.2022.870271 Search in Google Scholar

[11] Wacławek S. Greener catalysis for environmental applications. Catalysts. 2021;11:585. DOI: 10.3390/catal11050585.10.3390/catal11050585 Search in Google Scholar

[12] Genchi GG, Marino A, Tapeinos C, Ciofani G. Smart materials meet multifunctional biomedical devices: Current and prospective implications for nanomedicine. Front Bioeng Biotechnol. 2017;5. DOI: 10.3389/FBIOE.2017.00080.10.3389/fbioe.2017.00080574165829326928 Search in Google Scholar

[13] Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable polymeric scaffolds for enzyme immobilization. Front Bioeng Biotechnol. 2020;8. DOI: 10.3389/FBIOE.2020.00830.10.3389/fbioe.2020.00830740667832850710 Search in Google Scholar

[14] Wacławek S, Černík M, Dionysiou DD. The Development and Challenges of Oxidative Abatement for Contaminants of Emerging Concern. A New Paradigm for Environmental Chemistry and Toxicology. Singapore: Springer Singapore; 2020. DOI: 10.1007/978-981-13-9447-8_10.10.1007/978-981-13-9447-8_10 Search in Google Scholar

[15] Development of CFRP Hydrogen Pressure Vessels - CIKONI - Innovate. Develop. Realize. - Composite Engineering. Carbon Entwicklung - CFK (Carbon). Available from: https://cikoni.com/en/development-ofcfrp-hydrogen-pressure-vessels [accessed August 4, 2022]. Search in Google Scholar

[16] Goroncy J. The long road to mass production. AutomobilkonstruktionIndustrieDe. Available from: https://automobilkonstruktion.industrie.de/karosserie-interieur/der-lange-weg-zur-grossserie/#slider-intro-1 [accessed August 4, 2022]. Search in Google Scholar

[17] Lee SE, Kim DU, Cho YJ, Seo HS. Multiple impact damage in glare laminates: Experiments and simulations. Materials. 2021;14:7800. DOI: 10.3390/ma14247800.10.3390/ma14247800870776634947392 Search in Google Scholar

[18] Glowacz A, Antonino-Daviu JA, Caesarendra W, Civera M, Surace C. Non-destructive techniques for the condition and structural health monitoring of wind turbines: A literature review of the last 20 years. Sensors. 2022;22:1627. DOI: 10.3390/S22041627.10.3390/s22041627887463435214529 Search in Google Scholar

[19] Krawczyk K, Wacławek S, Silvestri D, Padil VVT, Řezanka M, Černík M, et al. Surface modification of zero-valent iron nanoparticles with β-cyclodextrin for 4-nitrophenol conversion. J Colloid Interface Sci. 2021;586:655-62. DOI: 10.1016/j.jcis.2020.10.135.10.1016/j.jcis.2020.10.13533189327 Search in Google Scholar

[20] Ediyilyam S, George B, Shankar SS, Dennise TT, Wacławek S, Cerník M, et al. Chitosan/gelatin/silver nanoparticles composites films for biodegradable food packaging applications. Polymers. 2021;13(11):1680. DOI: 10.3390/polym13111680.10.3390/polym13111680819676034064040 Search in Google Scholar

[21] Silvestri D, Wacławek S, Ramakrishnan RK, Venkateshaiah A, Krawczyk K, Padil VVT, et al. The use of a biopolymer conjugate for an eco-friendly one-pot synthesis of palladium-platinum alloys. Polymers. 2019;11:1948. DOI: 10.3390/polym11121948.10.3390/polym11121948696049831783572 Search in Google Scholar

[22] Krawczyk K, Wacławek S, Silvestri D, Torres-Mendieta R, Padil VVT, Řezanka M, et al. Synergistic effect of nano zero-valent iron and cyclodextrins: A nano-structure for water purification. NANOCON Conf Proc 11th Int Conf Nanomaterials. 2020:279-86. TANGER Ltd. DOI: 10.37904/nanocon.2019.8575.10.37904/nanocon.2019.8575 Search in Google Scholar

[23] Silvestri D, Wacławek S, Venkateshaiah A, Krawczyk K, Sobel B, Padil VVT, et al. Synthesis of Ag nanoparticles by a chitosan-poly(3-hydroxybutyrate) polymer conjugate and their superb catalytic activity. Carbohydr Polym. 2020;232:115806. DOI: 10.1016/j.carbpol.2019.115806.10.1016/j.carbpol.2019.11580631952605 Search in Google Scholar

[24] Khanam PN, Khalil HPSA, Jawaid M, Reddy GR, Narayana CS, Naidu SV. Sisal/carbon fibre reinforced hybrid composites: tensile, flexural and chemical resistance properties. J Polym Environ. 2010;18:727-33. DOI: 10.1007/s10924-010-0210-3.10.1007/s10924-010-0210-3 Search in Google Scholar

[25] Liras M, Barawi M, De La Peña O’Shea VA. Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. Chem Soc Rev. 2019;48:5454-87. DOI: 10.1039/C9CS00377K.10.1039/C9CS00377K31608912 Search in Google Scholar

[26] Staude I, Decker M, Ventura MJ, Jagadish C, Neshev DN, Gu M, et al. Hybrid high-resolution three-dimensional nanofabrication for metamaterials and nanoplasmonics. Adv Mater. 2013;25:1260-4. DOI: 10.1002/ADMA.201203564.10.1002/adma.20120356423180740 Search in Google Scholar

[27] Wang H, Dai H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem Soc Rev. 2013;42:3088-113. DOI: 10.1039/C2CS35307E.10.1039/c2cs35307e23361617 Search in Google Scholar

[28] Hagelien TF, Preisig HA, Friis J, Klein P, Konchakova N. A practical approach to ontology-based data modelling for semantic interoperability. 14th WCCM-ECCOMAS Congr 2020. 2021;2100-Other. DOI: 10.23967/WCCM-ECCOMAS.2020.035.10.23967/wccm-eccomas.2020.035 Search in Google Scholar

[29] European Commission. Resource Efficiency - Environment - European Commission 2016. Available from: https://ec.europa.eu/environment/resource_efficiency/ [accessed June 21, 2022]. Search in Google Scholar

[30] Padil VVT, Wacławek S, Černík M, Varma RS. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol Adv. 2018;36:1984-2016. DOI: 10.1016/j.biotechadv.2018.08.008.10.1016/j.biotechadv.2018.08.008620932330165173 Search in Google Scholar

[31] Padil VVT, Nguyen NHA, Ševců A, Černík M. Fabrication, characterization, and antibacterial properties of electrospun membrane composed of gum Karaya, polyvinyl alcohol, and silver nanoparticles. J Nanomater. 2015;2015:1-10. DOI: 10.1155/2015/750726.10.1155/2015/750726 Search in Google Scholar

[32] Venkateshaiah A, Sehl E, Timmins RL, Wacławek S, Černík M, Agarwal S, et al. Dialdehyde modified tree gum Karaya: A sustainable green crosslinker for gelatin-based edible films. Adv Sustain Syst. 2022. DOI: 10.1002/adsu.202100423.10.1002/adsu.202100423 Search in Google Scholar

[33] Ramakrishnan RK, Padil VVT, Škodová M, Wacławek S, Černík M, Agarwal S. Hierarchically porous bio-based sustainable conjugate sponge for highly selective oil/organic solvent absorption. Adv Funct Mater. 2021;31:2100640. DOI: 10.1002/adfm.202100640.10.1002/adfm.202100640 Search in Google Scholar

[34] Venkateshaiah A, Cheong JY, Habel C, Wacławek S, Lederer T, Černík M, et al. Tree gum-graphene oxide nanocomposite films as gas barriers. ACS Appl Nano Mater. 2020;3:633-40. DOI: 10.1021/acsanm.9b02166.10.1021/acsanm.9b02166 Search in Google Scholar

[35] Wacławek S, Padil VVT, Černík M. Major advances and challenges in heterogeneous catalysis for environmental applications: A review. Ecol Chem Eng S. 2018;25:9-34. DOI: 10.1515/eces-2018-0001.10.1515/eces-2018-0001 Search in Google Scholar

[36] Chen Z, Wang D, Yang H, Zhang Y, Li Y, Li C, et al. Novel application of red mud as disposal catalyst for pyrolysis and gasification of coal. Carbon Resour Convers. 2021;4:10-8. DOI: 10.1016/j.crcon.2021.01.001.10.1016/j.crcon.2021.01.001 Search in Google Scholar

[37] Bhat AH, Khalil HPSA, Banthia AK. Thermoplastic polymer based modified red mud composites materials. Adv Compos Mater - Ecodesign Anal. 2011. DOI: 10.5772/14377.10.5772/14377 Search in Google Scholar

[38] Pietrantonio M, Pucciarmati S, Torelli GN, D’Aria G, Forte F, Fontana D. Towards an integrated approach for red mud valorisation: a focus on titanium. Int J Environ Sci Technol. 2021;18:455-62. DOI: 10.1007/S13762-020-02835-5/TABLES/7.10.1007/s13762-020-02835-5 Search in Google Scholar

[39] Salvé J, Grégoire B, Imbert L, Hubert F, Karpel Vel Leitner N, Leloup M. Design of hybrid chitosan-montmorillonite materials for water treatment: Study of the performance and stability. Chem Eng J Adv. 2021;6:100087. DOI: 10.1016/J.CEJA.2021.100087.10.1016/j.ceja.2021.100087 Search in Google Scholar

[40] Silvestri D, Krawczyk K, Pawlyta M, Krzywiecki M, Padil VVT, Torres-Mendieta R, et al. Influence of catalyst zeta potential on the activation of persulfate. Chem Commun. 2021;57:7814-7. DOI: 10.1039/d1cc01946e.10.1039/D1CC01946E34270643 Search in Google Scholar

[41] Kudlek E, Silvestri D, Wacławek S, Padil VVT, Stuchlík M, Voleský L, et al. TiO2 immobilised on biopolymer nanofibers for the removal of bisphenol A and diclofenac from water. Ecol Chem Eng S. 2017;24:417-29. DOI: 10.1515/eces-2017-0028.10.1515/eces-2017-0028 Search in Google Scholar

[42] Alsalka Y, Al-Madanat O, Hakki A, Bahnemann DW. Boosting the H2 production efficiency via photocatalytic organic reforming: The role of additional hole scavenging system. Catalysts. 2021;11:1423. DOI: 10.3390/catal11121423.10.3390/catal11121423 Search in Google Scholar

[43] Wacławek S, Kudelski A, Lauterbach JA, Dionysiou DD. Commemorative issue in honor of Professor Gerhard Ertl on the occasion of His 85th birthday. Catalysts. 2022;12:624. DOI: 10.3390/catal12060624.10.3390/catal12060624 Search in Google Scholar

[44] Silvestri D, Wacławek S, Sobel B, Torres-Mendieta R, Novotný V, Nguyen NHA, et al. A poly(3-hydroxybutyrate)-chitosan polymer conjugate for the synthesis of safer gold nanoparticles and their applications. Green Chem. 2018;20:4975-82. DOI: 10.1039/c8gc02495b.10.1039/C8GC02495B Search in Google Scholar

[45] Ahmadi M, Foladivanda M, Jaafarzadeh N, Ramezani Z, Ramavandi B, Jorfi S, et al. Synthesis of chitosan zero-valent iron nanoparticles-supported for cadmium removal: characterization, optimization and modeling approach. J Water Supply Res Technol - Aqua. 2017;66:116-30. DOI: 10.2166/aqua.2017.027.10.2166/aqua.2017.027 Search in Google Scholar

[46] Tiraferri A, Chen KL, Sethi R, Elimelech M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci. 2008;324:71-9. DOI: 10.1016/j.jcis.2008.04.064.10.1016/j.jcis.2008.04.06418508073 Search in Google Scholar

[47] San Román I, Galdames A, Alonso ML, Bartolomé L, Vilas JL, Alonso RM. Effect of coating on the environmental applications of zero valent iron nanoparticles: the lindane case. Sci Total Environ. 2016;565:795-803. DOI: 10.1016/j.scitotenv.2016.04.034.10.1016/j.scitotenv.2016.04.03427102275 Search in Google Scholar

[48] Xu W, Li Z, Shi S, Qi J, Cai S, Yu Y, et al. Carboxymethyl cellulose stabilized and sulfidated nanoscale zero-valent iron: Characterization and trichloroethene dechlorination. Appl Catal B Environ. 2020;262:118303. DOI: 10.1016/j.apcatb.2019.118303.10.1016/j.apcatb.2019.118303 Search in Google Scholar

[49] Tosco TAE, Coisson M, Xue D, Sethi R. Zerovalent iron nanoparticles for groundwater remediation: Surface and magnetic properties, colloidal stability, and perspectives for field application. Research Signpost, Kerala. 2012:201-23. Search in Google Scholar

[50] Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: Adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanoparticle Res. 2008;10:795-814. DOI: 10.1007/s11051-007-9315-6.10.1007/s11051-007-9315-6 Search in Google Scholar

[51] Krol MM, Oleniuk AJ, Kocur CM, Sleep BE, Bennett P, Xiong Z, et al. A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environ Sci Technol. 2013;47:7332-40. DOI: 10.1021/es3041412.10.1021/es304141223725414 Search in Google Scholar

[52] Krawczyk K, Silvestri D, Nguyen NHA, Ševců A, Łukowiec D, Padil VVT, et al. Enhanced degradation of sulfamethoxazole by a modified nano zero-valent iron with a β-cyclodextrin polymer: Mechanism and toxicity evaluation. Sci Total Environ. 2022;817:152888. DOI: 10.1016/j.scitotenv.2021.152888.10.1016/j.scitotenv.2021.15288834998775 Search in Google Scholar

[53] Ren J, Woo YC, Yao M, Tijing LD, Shon HK. Enhancement of nanoscale zero-valent iron immobilization onto electrospun polymeric nanofiber mats for groundwater remediation. Process Saf Environ Prot. 2017;112:200-8. DOI: 10.1016/J.PSEP.2017.04.027.10.1016/j.psep.2017.04.027 Search in Google Scholar

[54] Kim HJ, Phenrat T, Tilton RD, Lowry G V. FeO nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ Sci Technol. 2009;43:3824-30. DOI: 10.1021/es802978s.10.1021/es802978s19544894 Search in Google Scholar

[55] Dong H, Zhao F, He Q, Xie Y, Zeng Y, Zhang L, et al. Physicochemical transformation of carboxymethyl cellulose-coated zero-valent iron nanoparticles (nZVI) in simulated groundwater under anaerobic conditions. Sep Purif Technol. 2017;175:376-83. DOI: 10.1016/j.seppur.2016.11.053.10.1016/j.seppur.2016.11.053 Search in Google Scholar

[56] Li S, Tang J, Liu Q, Liu X, Gao B. A novel stabilized carbon-coated nZVI as heterogeneous persulfate catalyst for enhanced degradation of 4-chlorophenol. Environ Int. 2020;138:105639. DOI: 10.1016/j.envint.2020.105639.10.1016/j.envint.2020.10563932179320 Search in Google Scholar

[57] San Román I, Alonso ML, Bartolomé L, Galdames A, Goiti E, Ocejo M, et al. Relevance study of bare and coated zero valent iron nanoparticles for lindane degradation from its by-product monitorization. Chemosphere. 2013;93:1324-32. DOI: 10.1016/j.chemosphere.2013.07.050.10.1016/j.chemosphere.2013.07.05023972910 Search in Google Scholar

[58] Tasharrofi S, Sadegh Hassani S, Taghdisian H, Sobat Z. Environmentally friendly stabilized nZVI-composite for removal of heavy metals. New Polymer Nanocomposites for Environmental Remediation. Elsevier; 2018. DOI: 10.1016/B978-0-12-811033-1.00024-X.10.1016/B978-0-12-811033-1.00024-X Search in Google Scholar

[59] Song Y, Zeng Y, Liao J, Chen J, Du Q. Efficient removal of sulfamethoxazole by resin-supported zero-valent iron composites with tunable structure: Performance, mechanisms, and degradation pathways. Chemosphere. 2021;269:128684. DOI: 10.1016/j.chemosphere.2020.128684.10.1016/j.chemosphere.2020.12868433127113 Search in Google Scholar

[60] Mosaferi M, Nemati S, Khataee AR, Nasseri S, Hashemi A. Removal of arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. J Environ Heal Sci Eng. 2014;12:74. DOI: 10.1186/2052-336X-12-74.10.1186/2052-336X-12-74401381824860660 Search in Google Scholar

[61] Velimirovic M, Schmid D, Wagner S, Micić V, von der Kammer F, Hofmann T. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation. Sci Total Environ. 2015. DOI: 10.1016/j.scitotenv.2015.11.007.10.1016/j.scitotenv.2015.11.00726596889 Search in Google Scholar

[62] Wacławek S, Silvestri D, Hrabák P, Padil VVT, Torres-Mendieta R, Wacławek M, et al. Chemical oxidation and reduction of hexachlorocyclohexanes: A review. Water Res. 2019;162:302-19. DOI: 10.1016/j.watres.2019.06.072.10.1016/j.watres.2019.06.07231288141 Search in Google Scholar

[63] Wacławek S, Nosek J, Cádrová L, Antoš V, Černík M. Use of various zero valent irons for degradation of chlorinated ethenes and ethanes. Ecol Chem Eng S. 2015;22:577-87. DOI: 10.1515/eces-2015-0034.10.1515/eces-2015-0034 Search in Google Scholar

[64] Silvestri D, Wacławek S, Sobel B, Torres-Mendieta R, Pawlyta M, Padil VVT, et al. Modification of nZVI with a bio-conjugate containing amine and carbonyl functional groups for catalytic activation of persulfate. Sep Purif Technol. 2021;257:117880. DOI: 10.1016/j.seppur.2020.117880.10.1016/j.seppur.2020.117880 Search in Google Scholar

[65] Garrido PF, Calvelo M, Blanco-Gonzalez A, Veleiro U, Suarez F, Conde D, et al. The Lord of the NanoRings: Cyclodextrins and the battle against SARS-CoV-2. Int J Pharm. 2020;588:119689. DOI: 10.1016/j.ijpharm.2020.119689.10.1016/j.ijpharm.2020.119689738141032717282 Search in Google Scholar

[66] Weiss-Errico MJ, O’Shea KE. Detailed NMR investigation of cyclodextrin-perfluorinated surfactant interactions in aqueous media. J Hazard Mater. 2017;329:57-65. DOI: 10.1016/j.jhazmat.2017.01.017.10.1016/j.jhazmat.2017.01.01728122278 Search in Google Scholar

[67] Ferino-Pérez A, Gamboa-Carballo JJ, Ranguin R, Levalois-Grützmacher J, Bercion Y, Gaspard S, et al. Evaluation of the molecular inclusion process of β-hexachlorocyclohexane in cyclodextrins. RSC Adv. 2019;9:27484-99. DOI: 10.1039/C9RA04431K.10.1039/C9RA04431K Search in Google Scholar

[68] Kawano S, Kida T, Takemine S, Matsumura C, Nakano T, Kuramitsu M, et al. Efficient removal and recovery of perfluorinated compounds from water by surface-tethered β-cyclodextrins on polystyrene particles. Chem Lett. 2013;42:392-4. DOI: 10.1246/cl.121239.10.1246/cl.121239 Search in Google Scholar

[69] Tang J, Shi Z, Berry RM, Tam KC. Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind Eng Chem Res. 2015;54:3299-308. DOI: 10.1021/acs.iecr.5b00177.10.1021/acs.iecr.5b00177 Search in Google Scholar

[70] Celebioglu A, Aytac Z, Umu OCO, Dana A, Tekinay T, Uyar T. One-step synthesis of size-tunable Ag nanoparticles incorporated in electrospun PVA/cyclodextrin nanofibers. Carbohydr Polym. 2014;99:808-16. DOI: 10.1016/j.carbpol.2013.08.097.10.1016/j.carbpol.2013.08.09724274573 Search in Google Scholar

[71] Hou Y, Kondoh H, Shimojo M, Sako EO, Ozaki N, Kogure T, et al. Inorganic nanocrystal self-assembly via the inclusion interaction of β-cyclodextrins: toward 3D spherical magnetite. J Phys Chem B. 2005. DOI: 10.1021/jp0476646.10.1021/jp047664616863138 Search in Google Scholar

[72] Aghahosseini H, Ramazani A. General overview on cyclodextrin-based artificial enzymes’ activity. Curr Org Chem. 2016;20:2817-36. DOI: 10.2174/1385272820666160328201207.10.2174/1385272820666160328201207 Search in Google Scholar

[73] Yang A, Ching C, Easler M, Helbling DE, Dichtel WR. Cyclodextrin polymers with nitrogen-containing tripodal crosslinkers for efficient PFAS adsorption. ACS Mater Lett. 2020;2:1240-5. DOI: 10.1021/acsmaterialslett.0c00240.10.1021/acsmaterialslett.0c00240 Search in Google Scholar

[74] Narayanan G, Shen J, Boy R, Gupta BS, Tonelli AE. aliphatic polyester nanofibers functionalized with cyclodextrins and cyclodextrin-guest inclusion complexes. Polymers. 2018;10:428. DOI: 10.3390/polym10040428.10.3390/polym10040428641527030966463 Search in Google Scholar

[75] Sikder MT, Mihara Y, Islam MS, Saito T, Tanaka S, Kurasaki M. Preparation and characterization of chitosan-caboxymethyl-β-cyclodextrin entrapped nanozero-valent iron composite for Cu(II) and Cr(IV) removal from wastewater. Chem Eng J. 2014;236:378-87. DOI: 10.1016/j.cej.2013.09.093.10.1016/j.cej.2013.09.093 Search in Google Scholar

[76] Yao X, Mu J, Zeng L, Lin J, Nie Z, Jiang X, et al. Stimuli-responsive cyclodextrin-based nanoplatforms for cancer treatment and theranostics. Mater Horizons. 2019;6:846-70. DOI: 10.1039/c9mh00166b.10.1039/C9MH00166B Search in Google Scholar

[77] Alsbaiee A, Smith BJ, Xiao L, Ling Y, Helbling DE, Dichtel WR. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature. 2016;529:190-4. DOI: 10.1038/nature16185.10.1038/nature1618526689365 Search in Google Scholar

[78] Gamboa-Carballo JJ, Ferino-Pérez A, Rana VK, Levalois-Grützmacher J, Gaspard S, Montero-Cabrera LA, et al. Theoretical evaluation of the molecular inclusion process between chlordecone and cyclodextrins: A new method for mitigating the basis set superposition error in the case of an implicit solvation model. J Chem Inf Model. 2020;60:2115-25. DOI: 10.1021/acs.jcim.9b01064.10.1021/acs.jcim.9b0106432105472 Search in Google Scholar

[79] Mao Y, Sun M, Yang X, Wei H, Song Y, Xin J. Remediation of organochlorine pesticides (OCPs) contaminated soil by successive hydroxypropyl-β-cyclodextrin and peanut oil enhanced soil washing-nutrient addition: A laboratory evaluation. J Soils Sediments. 2013;13:403-12. DOI: 10.1007/s11368-012-0628-4.10.1007/s11368-012-0628-4 Search in Google Scholar

[80] Shao D, Sheng G, Chen C, Wang X, Nagatsu M. Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere. 2010;79:679-85. DOI: 10.1016/J.CHEMOSPHERE.2010.03.008.10.1016/j.chemosphere.2010.03.00820350742 Search in Google Scholar

[81] Hanna K, Chiron S, Oturan MA. Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res. 2005;39:2763-73. DOI: 10.1016/j.watres.2005.04.057.10.1016/j.watres.2005.04.05715975622 Search in Google Scholar

[82] Wang H, Yan S, Qu B, Liu H, Ding J, Ren N. Magnetic solid phase extraction using Fe3O4@β-cyclodextrin-lipid bilayers as adsorbents followed by GC-QTOF-MS for the analysis of nine pesticides. New J Chem. 2020;44:7727-39. DOI: 10.1039/d0nj01191f.10.1039/D0NJ01191F Search in Google Scholar

[83] Badruddoza AZM, Tay ASH, Tan PY, Hidajat K, Uddin MS. Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. J Hazard Mater. 2011;185:1177-86. DOI: 10.1016/j.jhazmat.2010.10.029.10.1016/j.jhazmat.2010.10.02921081259 Search in Google Scholar

[84] Ren B, Zhang M, Gao H, Zheng J, Jia L. Atomic elucidation of the cyclodextrin effects on DDT solubility and biodegradation. Phys Chem Chem Phys. 2016;18:17380-8. DOI: 10.1039/c6cp02790c.10.1039/C6CP02790C27301608 Search in Google Scholar

[85] Mrówczyński R, Jędrzak A, Szutkowski K, Grześkowiak B, Coy E, Markiewicz R, et al. Cyclodextrin-based magnetic nanoparticles for cancer therapy. Nanomaterials. 2018;8:170. DOI: 10.3390/nano8030170.10.3390/nano8030170586966129547559 Search in Google Scholar

[86] Li X, Chen AY, Yu LY, Chen XX, Xiang L, Zhao HM, et al. Effects of β-cyclodextrin on phytoremediation of soil co-contaminated with Cd and BDE-209 by arbuscular mycorrhizal amaranth. Chemosphere. 2019;220:910-20. DOI: 10.1016/J.CHEMOSPHERE.2018.12.211.10.1016/j.chemosphere.2018.12.21133395812 Search in Google Scholar

[87] Fukushima M, Tatsumi K. Degradation of pentachlorophenol in contaminated soil suspensions by potassium monopersulfate catalyzed oxidation by a supramolecular complex between tetra(p-sulfophenyl)porphineiron(III) and hydroxypropyl-β-cyclodextrin. J Hazard Mater. 2007;144:222-8. DOI: 10.1016/j.jhazmat.2006.10.013.10.1016/j.jhazmat.2006.10.01317101215 Search in Google Scholar

[88] Chen L, Berry RM, Tam KC. Synthesis of β-Cyclodextrin-modified cellulose nanocrystals (CNCs)@Fe3O4@SiO2 superparamagnetic nanorods. ACS Sustain Chem Eng. 2014;2:951-8. DOI: 10.1021/sc400540f.10.1021/sc400540f Search in Google Scholar

[89] Rajamanikandan R, Ilanchelian M. β-cyclodextrin functionalised silver nanoparticles as a duel colorimetric probe for ultrasensitive detection of Hg2+ and S2− ions in environmental water samples. Mater Today Commun. 2018;15:61-9. DOI: 10.1016/j.mtcomm.2018.02.024.10.1016/j.mtcomm.2018.02.024 Search in Google Scholar

[90] Femminò S, Penna C, Bessone F, Caldera F, Dhakar N, Cau D, et al. α-cyclodextrin and α-cyclodextrin polymers as oxygen nanocarriers to limit hypoxia/reoxygenation injury: Implications from an in vitro model. Polymers. 2018;10:211. DOI: 10.3390/polym10020211.10.3390/polym10020211641489130966247 Search in Google Scholar

[91] Martel B, Le Thuaut P, Bertini S, Crini G, Bacquet M, Torri G, et al. Grafting of cyclodextrins onto polypropylene nonwoven fabrics for the manufacture of reactive filters. III. Study of the sorption properties. J Appl Polym Sci. 2002;85:1771-8. DOI: 10.1002/app.10682.10.1002/app.10682 Search in Google Scholar

[92] Alzate-Sánchez DM, Smith BJ, Alsbaiee A, Hinestroza JP, Dichtel WR. Cotton fabric functionalized with a β-cyclodextrin polymer captures organic pollutants from contaminated air and water. Chem Mater. 2016;28:8340-6. DOI: 10.1021/acs.chemmater.6b03624.10.1021/acs.chemmater.6b03624 Search in Google Scholar

[93] Fava F, Bertin L, Fedi S, Zannoni D. Methyl-β-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnol Bioeng. 2003;81:381-90. DOI: 10.1002/BIT.10579.10.1002/bit.1057912491523 Search in Google Scholar

[94] Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem Rev. 1998;98:1743-53. DOI: 10.1021/cr970022c.10.1021/cr970022c11848947 Search in Google Scholar

[95] Mamba BB, Krause RW, Malefetse TJ, Nxumalo EN. Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water. Environ Chem Lett. 2007;5:79-84. DOI: 10.1007/s10311-006-0082-x.10.1007/s10311-006-0082-x Search in Google Scholar

[96] Li X, Qi Z, Liang K, Bai X, Xu J, Liu J, et al. An Artificial supramolecular nanozyme based on β-cyclodextrin-modified gold nanoparticles. Catal Letters. 2008;124:413-7. DOI: 10.1007/s10562-008-9494-5.10.1007/s10562-008-9494-5 Search in Google Scholar

[97] Hu X, Hu Y, Xu G, Li M, Zhu Y, Jiang L, et al. Green synthesis of a magnetic β-cyclodextrin polymer for rapid removal of organic micro-pollutants and heavy metals from dyeing wastewater. Environ Res. 2020;180. DOI: 10.1016/j.envres.2019.108796.10.1016/j.envres.2019.10879631629085 Search in Google Scholar

[98] Cathum SJ, Dumouchel A, Punt M, Brown CE. Sorption/desorption of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo furans (PCDDs/PCDFs) in the presence of cyclodextrins. Soil Sediment Contam. 2007;16:15-27. DOI: 10.1080/15320380601077750.10.1080/15320380601077750 Search in Google Scholar

[99] Varghese B, Suliman FEO, Al-Hajri A, Al Bishri NSS, Al-Rwashda N. Spectral and theoretical study on complexation of sulfamethoxazole with β- and HPβ-cyclodextrins in binary and ternary systems. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2018;190:392-401. DOI: 10.1016/j.saa.2017.09.060.10.1016/j.saa.2017.09.06028950231 Search in Google Scholar

[100] Monteiro APF, Caminhas LD, Ardisson JD, Paniago R, Cortés ME, Sinisterra RD. Magnetic nanoparticles coated with cyclodextrins and citrate for irinotecan delivery. Carbohydr Polym. 2017;163:1-9. DOI: 10.1016/j.carbpol.2016.11.091.10.1016/j.carbpol.2016.11.09128267484 Search in Google Scholar

[101] Alam AU, Deen MJ. Bisphenol a electrochemical sensor using graphene oxide and β-cyclodextrin-functionalized multi-walled carbon nanotubes. Anal Chem. 2020;92:5532-9. DOI: 10.1021/acs.analchem.0c00402.10.1021/acs.analchem.0c0040232141295 Search in Google Scholar

[102] Li J, Chen C, Zhao Y, Hu J, Shao D, Wang X. Synthesis of water-dispersible Fe3O4β-cyclodextrin by plasma-induced grafting technique for pollutant treatment. Chem Eng J. 2013. DOI: 10.1016/j.cej.2013.06.016.10.1016/j.cej.2013.06.016 Search in Google Scholar

[103] Malik NS, Ahmad M, Minhas MU. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir. PLoS One. 2017;12:e0172727. DOI: 10.1371/journal.pone.0172727.10.1371/journal.pone.0172727533048528245257 Search in Google Scholar

[104] Chalasani R, Vasudevan S. Cyclodextrin functionalized magnetic iron oxide nanocrystals: a host-carrier for magnetic separation of non-polar molecules and arsenic from aqueous media. J Mater Chem. 2012;22:14925. DOI: 10.1039/c2jm32360e.10.1039/c2jm32360e Search in Google Scholar

[105] Topuz F, Uyar T. Electrospinning of cyclodextrin functional nanofibers for drug delivery applications. Pharmaceutics. 2019;11:6. DOI: 10.3390/pharmaceutics11010006.10.3390/pharmaceutics11010006635875930586876 Search in Google Scholar

[106] Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers Manage. 2018;165:602-27. DOI: 10.1016/J.ENCONMAN.2018.03.088.10.1016/j.enconman.2018.03.088 Search in Google Scholar

[107] Stegbauer L, Schwinghammer K, Lotsch BV. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci. 2014;5:2789-93. DOI: 10.1039/C4SC00016A.10.1039/C4SC00016A Search in Google Scholar

[108] Lopez-Magano A, Jiménez-Almarza A, Aleman J, Mas-Ballesté R. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) applied to photocatalytic organic transformations. Catalysts. 2020;10:720. DOI: 10.3390/CATAL10070720.10.3390/catal10070720 Search in Google Scholar

[109] Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012;125:331-49. DOI: 10.1016/j.apcatb.2012.05.036.10.1016/j.apcatb.2012.05.036 Search in Google Scholar

[110] Sang SH, Furukawa H, Yaghi OM, Goddard WA. Covalent organic frameworks as exceptional hydrogen storage materials. J Am Chem Soc. 2008;130:11580-1. DOI: 10.1021/JA803247Y.10.1021/ja803247y18683924 Search in Google Scholar

[111] Hirscher M, Panella B. Hydrogen storage in metal-organic frameworks. Scr Mater. 2007;56:809-12. DOI: 10.1016/J.SCRIPTAMAT.2007.01.005.10.1016/j.scriptamat.2007.01.005 Search in Google Scholar

[112] Wang C, Wang H, Luo R, Liu C, Li J, Sun X, et al. Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate. Chem Eng J. 2017;330:262-71. DOI: 10.1016/j.cej.2017.07.156.10.1016/j.cej.2017.07.156 Search in Google Scholar

[113] Chambers A, Park C, Baker RTK, Rodriguez NM. Hydrogen storage in graphite nanofibers. J Phys Chem B. 1998;102. DOI: 10.1021/JP980114L.10.1021/jp980114l Search in Google Scholar

[114] Ding B, Si Y. Electrospun Nanofibers for Energy and Environmental Applications. Ottawa: Springer Verlag GmbH; 2011. DOI: 10.1007/978-3-642-54160-5.10.1007/978-3-642-54160-5 Search in Google Scholar

[115] Chen X, Xue Z, Niu K, Liu X, Wei Lv, Zhang B, et al. Li-fluorine codoped electrospun carbon nanofibers for enhanced hydrogen storage. RSC Adv. 2021;11:4053-61. DOI: 10.1039/d0ra06500e.10.1039/D0RA06500E Search in Google Scholar

[116] Li F, Jiang X, Zhao J, Zhang S. Graphene oxide: A promising nanomaterial for energy and environmental applications. Nano Energy. 2015;16:488-515. DOI: 10.1016/J.NANOEN.2015.07.014.10.1016/j.nanoen.2015.07.014 Search in Google Scholar

[117] Wacławek S, Ma X, Sharma VK, Xiao R, O’Shea KE, Dionysiou DD. Making waves: Defining advanced reduction technologies from the perspective of water treatment. Water Res. 2022;212:118101. DOI: 10.1016/j.watres.2022.118101.10.1016/j.watres.2022.11810135092911 Search in Google Scholar

eISSN:
2084-4549
Język:
Angielski