Otwarty dostęp

Comparison of Bomaplex Blue CR-L Removal by Adsorption Using Raw and Activated Pumpkin Seed Shells


Zacytuj

[1] Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbent: A review. J Chem Eng. 2010;177:70-80. DOI: 10.1016/j.jhazmat.2009.12.047.20044207 Open DOISearch in Google Scholar

[2] Banerjee S, Chattopadhyaya MC. Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian J Chem. 2017;10:1629-38. DOI: 10.1016/j.arabjc.2013.06.005. Open DOISearch in Google Scholar

[3] Hammood ZA, Chyad TF, Al-Saedi R. Adsorption performance of dyes over zeolite for textile wastewater treatment. Ecol Chem Eng S. 2021;28(3):329-37. DOI: 10.2478/eces-2021-0022. Open DOISearch in Google Scholar

[4] Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods: A review. J Environ Chem Eng. 2018;6(4):4676-97. DOI: 10.1016/j.jece.2018.06.060. Open DOISearch in Google Scholar

[5] Karaçiray E. Treatment of Dyestuffs with Different Properties from Textile Waste Water in Membrane Bioreactor (MBR) System [Master’s Thesis]. Bilecik: Bilecik Şeyh Edebali University; 2019. Search in Google Scholar

[6] Kocadagistan B, Kocadagistan E. The effects of sunflower seed shell modifying process on textile dye adsorption: Kinetic, thermodynamic and equilibrium study. Desalin Water Treatment. 2016;57(7):3168-78. DOI: 10.1080/19443994.2014.980329. Open DOISearch in Google Scholar

[7] Al-Alwani MAM, Norasikin AL, Mohamad A, Kadhum AAH, Mukhlus A. Application of dyes extracted from Alternanthera Dentata leaves and Musa Acuminata Bracts as natural sensitizers for dye-sensitised solar cells. Spectrochim Acta Part A: Molecular Biomolecular Spectroscopy. 2018;192:487-98. DOI: 10.1016/j.saa.2017.11.018.29133132 Open DOISearch in Google Scholar

[8] Jumasiah A, Chuah TG, Gimbon J, Choong TSY, Azni I. Adsorption of basic dye onto palm kernel shell activated carbon: Sorption equilibrium and kinetics studies. Desalination. 2005;186(1-3):57-64. DOI: 10.1016/j.desal.2005.05.015. Open DOISearch in Google Scholar

[9] Wang Z, Xue M, Huang K, Liu Z. Textile Dyeing Wastewater Treatment. Advances in Treating Textile Effluent. Rijeka, Croatia: InTech; 2011:91-116.10.5772/22670 Search in Google Scholar

[10] Lian L, Guo L, Guo C. Adsorption of Congo red from aqueous solutions onto Ca-bentonite. J Hazardous Materials. 2009;161(1):126-31. DOI: 10.1016/j.jhazmat.2008.03.063.18487014 Open DOISearch in Google Scholar

[11] Adegoke KA, Bello OS. Dye sequestration using agricultural wastes as adsorbents. Water Resources Industry. 2015;12:8-24. DOI: 10.1016/j.wri.2015.09.002. Open DOISearch in Google Scholar

[12] Gupta VK, Ali I, Saleh TA, Nayak A, Agarwal S. Chemical treatment technologies for waste-water recycling - an overview. RSC Advancers. 2012;2(16):6380-8. DOI: 10.1039/C2RA20340E. Open DOISearch in Google Scholar

[13] Shabaan OA, Jahin HS, Mohamed GG. Removal of anionic and cationic dyes from wastewater by adsorption using multiwall carbon nanotubes. Arabian J Chem. 2020;13(3):4797-4810. DOI: 10.1016/j.arabjc.2020.01.010. Open DOISearch in Google Scholar

[14] Al-Degs Y, Khrausheh MAM, Allen SJ, Ahmad MN. Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res. 2000;34(3):927-35. DOI: 10.1016/S0043-1354(99)00200-6. Open DOISearch in Google Scholar

[15] Yener J, Kopac T, Dogu G, Dogu T. Adsorption of basic yellow 28 from aqueous solutions with clinoptilolite and amberlite. J Colloid Interface Sci. 2006;294(2):255-64. DOI: 10.1016/j.jcis.2005.07.040.16085081 Open DOISearch in Google Scholar

[16] Yokwana K, Kuvarega AT, Mhlang, SD, Nxumalo EN. Mechanistic aspects for the removal of Congo red dye from aqueous media through adsorption over N-doped graphene oxide nanoadsorbents prepared from graphite flakes and powders. Phys Chem Earth. 2018;107:58-70. DOI: 10.1016/j.pce.2018.08.001. Open DOISearch in Google Scholar

[17] Abd-Elhamid AI, Kamoun EA, El-Shanshory AA, Soliman HMA, Aly HF. Evaluation of graphene oxide-activated carbon as effective composite adsorbent toward the removal of cationic dyes: composite preparation, characterisation and adsorption parameters. J Molecular Liquids. 2019;279:530-9. DOI: 10.1016/j.molliq.2019.01.162. Open DOISearch in Google Scholar

[18] Naushad M, Alqadami AA, AlOthman ZA, Alsohaimi IH, Algamdi MS, Aldawsari AM. Adsorption kinetics, isotherm and reusability studies for the removal of cationic dye from aqueous medium using arginine modified activated carbon. J Molecular Liquids. 2019;293:111442. DOI: 10.1016/j.molliq.2019.111442. Open DOISearch in Google Scholar

[19] Mashkoor F, Nasar A. Preparation, characterization and adsorption studies of the chemically modified Luffa aegyptica peel as a potential adsorbent for the removal of malachite green from aqueous solution. J Molecular Liquids. 2019;274:315-27. DOI: 10.1016/j.molliq.2018.10.119. Open DOISearch in Google Scholar

[20] Pillai P, Dharaskar S, Shah M, Sultania R. Determination of fluoride removal using silica nano adsorbent modified by rice husk from water. Groundwater Sust Development. 2020;11:100423. DOI: 10.1016/j.gsd.2020.100423. Open DOISearch in Google Scholar

[21] Almasri DA, Rhadfi T, Atieh MA, McKay G, Ahzi S. High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chem Eng J. 2018;335:1-12. DOI: 10.1016/j.cej.2017.10.031. Open DOISearch in Google Scholar

[22] Tanhaei B, Ayati A, Sillanpää M. Magnetic xanthate modified chitosan as an emerging adsorbent for cationic azo dyes removal: Kinetic, thermodynamic and isothermal studies. Int J Biol Macromolecules. 2019;121:1126-34. DOI: 10.1016/j.ijbiomac.2018.10.137.30342945 Open DOISearch in Google Scholar

[23] Nandiyanto ABD. Isotherm adsorption of carbon microparticles prepared from pumpkin (Cucurbita maxima) seeds using two-parameter monolayer adsorption models and equations. Moroccan J Chem. 2020;8(3):745-61. DOI: 10.48317/IMIST.PRSM/morjchem-v8i3.21636. Open DOISearch in Google Scholar

[24] Kaur G, Singh N, Rajor A. Adsorption of doxycycline hydrochloride onto powdered activated carbon synthesized from pumpkin seed shell by microwave-assisted pyrolysis. Environ Technol Innovation. 2021;23:101601. DOI: 10.1016/j.eti.2021.101601. Open DOISearch in Google Scholar

[25] Kowalkowska A, Jóźwiak T. Utilization of pumpkin (Cucurbita pepo) seed husks as a low-cost sorbent for removing anionic and cationic dyes from aqueous solutions. Desalin Water Treatment. 2019;171:397-407. DOI: 10.5004/dwt.2019.24761. Open DOISearch in Google Scholar

[26] Okoye AI, Ejikeme PM, Onukwuli OD. Lead removal from wastewater using fluted pumpkin seed shell activated carbon: Adsorption modeling and kinetics. Int J Environ Sci Technol. 2010;7(4):793-800. DOI: 10.1007/BF03326188. Open DOISearch in Google Scholar

[27] Kul S. Removal of Cu(II) from aqueous solutions using modified sewage sludge ash. Int J Environ Sci Technol. 2021;18:3795-806. DOI: 10.1007/s13762-021-03419-7. Open DOISearch in Google Scholar

[28] Kamiński W, Kuśmierek K, Świątkowski A, Tomczak E. Simultaneous adsorption of phenol derivatives from water onto spherical activated carbon. Ecol Chem Eng S. 2020;27(3):403-13. DOI: 10.2478/eces-2020-0026. Open DOISearch in Google Scholar

[29] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Amer Chem Soc. 1918;40:1361-403. DOI: 10.1021/ja02242a004. Open DOISearch in Google Scholar

[30] Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Amer Chem Soc. 1938;60(2):309-19. DOI: 10.1021/ja01269a023. Open DOISearch in Google Scholar

[31] Ekmekyapar Kul Z, Nuhoğlu Y, Kul S, Nuhoğlu Ç, Ekmekyapar Torun F. Mechanism of heavy metal uptake by electron paramagnetic resonance and FTIR: enhanced manganese(II) removal onto waste acorn of Quercus ithaburensis. Sep Sci Technol. 2016;51(1):115-25. DOI: 10.1080/01496395.2015.1081943. Open DOISearch in Google Scholar

[32] Agarwal S, Tyagi I, Gupta VK, Ghasemi N, Shahivand M, Ghasemi M. Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride. J Molecular Liquids. 2016;208:208-18. DOI: 10.1016/j.molliq.2016.02.073. Open DOISearch in Google Scholar

[33] Nuhoğlu Y, Ekmekyapar Kul Z, Kul S, Nuhoğlu Ç, Ekmekyapar Torun F. Pb(II) biosorption from the aqueous solutions by raw and modified tea factory waste (TFW). Int J Environ Sci Technol. 2021;18:2975-86. DOI: 10.1007/s13762-020-03038-8. Open DOISearch in Google Scholar

[34] Al-Degs YS, El-Barghouthia MI, El-Sheikha AH, Walker GM. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes Pigments. 2008;77(1):16-23. DOI: 10.1016/j.dyepig.2007.03.001. Open DOISearch in Google Scholar

[35] Vijayaraghavan K, Yun YS. Biosorption of C.I. Reactive black 5 from aqueous solution using acid-treated biomass of brown seaweed Laminaria sp. Dyes Pigments. 2008;76:726-32. DOI: 10.1016/j.dyepig.2007.01.013. Open DOISearch in Google Scholar

[36] Renganathan S, Kalpana J, Kumar MD, Velan M. Equilibrium and kinetic studies on the removal of reactive red 2 dye from an aqueous solution using a positively charged functional group of the Nymphaea rubra biosorbent. Clean-Soil Air Water. 2009;37:901-7. DOI: 10.1002/clen.200900133. Open DOISearch in Google Scholar

[37] Ucun H. Equilibrium, thermodynamic and kinetics of reactive black 5 biosorption on loquat (Eriobotrya japonica) seed. Sci Res Essays. 2011;6(19):4113-24. DOI: 10.5897/SRE11.674. Open DOISearch in Google Scholar

[38] Lacerda VS, Lopez-Sotelo JB, Correa-Guimaraes A, Hernandez-Navarro S, Sanchez-Bascones M, Navas-Gracia LM, et al. Rhodamine B removal with activated carbons obtained fromlignocellulosic waste. J Environ Manage. 2015;155:67-76. DOI: 10.1016/j.jenvman.2015.03.007.25770964 Open DOISearch in Google Scholar

[39] Jain SN, Gogate PR. Acid Blue 113 removal from aqueous solution using novel biosorbent based on NaOH treated and surfactant modified fallen leaves of Prunus Dulcis. J Environ Chem Eng. 2017;5:3384-94. DOI: 10.1016/j.jece.2017.06.047. Open DOISearch in Google Scholar

[40] Sharma YC, Kaul SN, Weng CH. Adsorptive separation of cadmium from aqueous solutions and wastewaters by riverbed sand. Environ Pollut. 2007;150:251-7. DOI: 10.1016/j.envpol.2007.01.014.17376570 Open DOISearch in Google Scholar

[41] Abbas M, Kaddour S, Trari M. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J Industrial Eng Chem. 2014;20(3):745-51. DOI: 10.1016/j.jiec.2013.06.030. Open DOISearch in Google Scholar

[42] Wu C. Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics. J Hazardous Materials. 2007;144(1-2):93-100. DOI: 10.1016/j.jhazmat.2006.09.083.17081687 Open DOISearch in Google Scholar

[43] Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Molecular Liquids. 2019;273:425-34. DOI: 10.1016/j.molliq.2018.10.048. Open DOISearch in Google Scholar

[44] Jaycock MJ, Parfitt GD. Chemistry of Interface. Onichester: Ellis Horwood Ltd; 1981. Search in Google Scholar

[45] Jia CS, Zhang LH, Peng XL, Luo JX, Zhao YL, Liu JY, et al. Prediction of entropy and Gibbs free energy for nitrogen. Chem Eng Sci. 2019;202:70-4. DOI: 10.1016/j.ces.2019.03.033. Open DOISearch in Google Scholar

[46] Demiral I, Şamdan CA. Preparation and characterization of activated carbon from pumpkin seed shell using H3PO4. Anadolu Univ J Sci Technol A - Appl Sciand Eng. 2016;17(1):125-38. DOI: 10.18038/btda.64281. Open DOISearch in Google Scholar

[47] Mahapatra K, Ramteke DS, Paliwal LJ. Production of activated carbon from sludge of food processing industry under controlled pyrolysis and its application for methylene blue removal. J Analytical Appl Pyrolysis. 2012;95:79-86. DOI: 10.1016/j.jaap.2012.01.009. Open DOISearch in Google Scholar

[48] Vijayalakshmi P, Sathya SBV, Thiruvengadaravi KV, Panneerselvam P, Palanichamy M, Sivanesan S. Removal of acid violet 17 from aqueous solutions by adsorption onto activated carbon prepared from pistachio nut shell. Separation Sci Technol. 2011;46:155-63. DOI: 10.1080/01496395.2010.484006. Open DOISearch in Google Scholar

[49] Capron I, Robert P, Colonna P, Brogly M, Planchot V. Starch in rubbery and glassy states by FTIR spectroscopy. Carbohydrate Polymers. 2007;68(2):249-59. DOI: 10.1016/j.carbpol.2006.12.015. Open DOISearch in Google Scholar

[50] Prahas D, Kartika Y, Indraswati N, Ismadji S. Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chem Eng J. 2008;140:32-42. DOI: 10.1016/j.cej.2007.08.032. Open DOISearch in Google Scholar

eISSN:
2084-4549
Język:
Angielski