Otwarty dostęp

Effects of Essential Oils on in Vitro Growth of Fungi Cladobotryum dendroides and Mycogone perniciosa Infecting Button Mushroom


Zacytuj

[1] Potočnik I, Vukojević J, Stajić M, Rekanović E, Stepanović M, Milijašević S, Todorović B. Toxicity of biofungicide Timorex 66 EC to Cladobotryum dendroides and Agaricus bisporus. Crop Prot. 2010;29:290-4. DOI: 10.1016/j.cropro.2009.07.016.10.1016/j.cropro.2009.07.016 Search in Google Scholar

[2] Potočnik I, Vukojević J, Stajić M, Tanović B, Rekanović E. Sensitivity of Mycogone perniciosa, pathogen of culinary-medicinal button mushroom Agaricus bisporus (J. Lge) Imbach (Agaricomycetidae), to selected fungicides and essential oils. Int J Med Mushrooms. 2010;12(1):91-8. DOI: 10.1615/IntJMedMushr.v12.i1.90.10.1615/IntJMedMushr.v12.i1.90 Search in Google Scholar

[3] Carrasco J, Navarro MJ, Santos M, Diánez F, Gea FJ. Identification, incidence and pathogenicity of Cladobotryum mycophilum, causal agent of cobweb disease on Agaricus bisporus mushroom crops in Spain. Ann Appl Biol. 2016;168:214-24. DOI: 10.1111/aab.12257.10.1111/aab.12257 Search in Google Scholar

[4] Szumigaj-Tarnowska J, Ślusarski C, Uliński Z. Pathogenicity of Mycogone perniciosa isolates collected on Polish mushroom farms. J Hortic Res. 2015;23(1):87-92. DOI: 10.2478/johr-2015-0011.10.2478/johr-2015-0011 Search in Google Scholar

[5] Zhang CL, Xu JZ, Kakishima M, Li Y. First report of wet bubble disease caused by Hypomyces perniciosus on Pleurotus citrinopileatus in China. Plant Dis. 2017;101(7):1321xc. DOI: 10.1094/PDIS-02-17-0179-PDN.10.1094/PDIS-02-17-0179-PDN Search in Google Scholar

[6] Gea FJ, Navarro MJ, Santos M, Diánez F, Carrasco J. Control of fungal diseases in mushroom crops while dealing with fungicide resistance: A review. Microorganisms. 2021;9:585-608. DOI: 10.3390/microorganisms9030585.10.3390/microorganisms9030585800069433809140 Search in Google Scholar

[7] Tamm H, Põldmaa K. Diversity, host associations and phylogeography of temperate aurofusarin-producing Hypomyces/Cladobotryum including causal agents of cobweb disease of cultivated mushrooms. Fungal Biol. 2013;117:348-67. DOI: 10.1016/j.funbio.2013.03.005.10.1016/j.funbio.2013.03.00523719221 Search in Google Scholar

[8] Carrasco J, Navarro MJ, Gea FJ. Cobweb, a serious pathology in mushroom crops: A review. Span J Agri Res. 2017;15(2):e10R01. DOI: 10.5424/sjar/2017152-10143.10.5424/sjar/2017152-10143 Search in Google Scholar

[9] Chakwiya A, Van der Linde EJ, Chidamba L, Korsten L. Diversity of Cladobotryum mycophilum isolates associated with cobweb disease of Agaricus bisporus in the south African mushroom industry. Eur J Plant Pathol. 2019;154:767-76. DOI: 10.1007/s10658-019-01700-7.10.1007/s10658-019-01700-7 Search in Google Scholar

[10] Adie B, Grogan H, Archer S, Mills P. 2006. Temporal and spatial dispersal of Cladobotryum conidia in the controlled environment of a mushroom growing room. Appl Environ Microbiol. 2006;72:7212-7. DOI: 10.1128/AEM.01369-06.10.1128/AEM.01369-06163617216980426 Search in Google Scholar

[11] Potočnik I, Stepanović M, Rekanović E, Todorović B, Milijašević-Marčić S. Disease control by chemical and biological fungicides in cultivated mushrooms: button mushroom, oyster mushroom and shiitake. Pestic Phytomed. (Belgrade) 2015;30(4):201-8. DOI: 10.2298/PIF1504201P.10.2298/PIF1504201P Search in Google Scholar

[12] Potočnik I, Todorović B, Đurović-Pejčev R, Stepanović M, Rekanović E, Milijašević-Marčić S. Antimicrobial activity of biochemical substances against pathogens of cultivated mushrooms in Serbia. Pestic Phytomed (Belgrade). 2016;31(1-2):19-27. DOI: 10.2298/PIF1602019P.10.2298/PIF1602019P Search in Google Scholar

[13] Sales MDC, Costa HB, Fernandes PMB, Ventura JA, Meira DM. Antifungal activity of plant extracts with a potential to control plant pathogens in pineapple. Asian Pac J Trop Biomed. 2016;6:26-31. DOI: 10.1016/j.apjtb.2015.09.026.10.1016/j.apjtb.2015.09.026 Search in Google Scholar

[14] Moghaddam M., Mehdizadeh L. Chapter 13 - Chemistry of essential oils and factors influencing their constituents. In: Grumezescu AM, Holban AM, editors. Soft Chemistry and Food Fermentation. Handbook of Food Bioengineering. Vol. 3. Elsevier Inc. 2017: 379-419. ISBN: 9780128114124. DOI: 10.1016/B978-0-12-811412-4.00013-8.10.1016/B978-0-12-811412-4.00013-8 Search in Google Scholar

[15] Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils - A review. Food Chem Toxicol. 2008;4:446-75. DOI: 10.1016/j.fct.2007.09.106.10.1016/j.fct.2007.09.106 Search in Google Scholar

[16] Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils - Present status and future perspectives. Medicines. 2017;4(3):58. DOI: 10.3390/medicines4030058.10.3390/medicines4030058 Search in Google Scholar

[17] Shuping DSS, Eloff JN. The use of plants to protect plants and food against fungal pathogens: A review. Afr J Tradit Compl Altern Med. 2017;14:120-7. DOI: 10.21010/ajtcam.v14i4.14.10.21010/ajtcam.v14i4.14 Search in Google Scholar

[18] Regnier T, Combrinck S. In vitro and in vivo screening of essential oils for the control of wet bubble disease of Agaricus bisporus. S Afr J Bot. 2010;76:681-5. DOI: 10.1016/j.sajb.2010.07.018.10.1016/j.sajb.2010.07.018 Search in Google Scholar

[19] Voda K, Boh B, Vrtačnik M, Pohleven F. Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes versicolor and the brown-rot Coniophora puteana. Int Biodeter Biodegr. 2003;51:51-9. DOI: 10.1016/S0964-8305(02)00075-6.10.1016/S0964-8305(02)00075-6 Search in Google Scholar

[20] Adam K, Sivropoulou A, Kokkini S, Lanaras T, Arsenakis M. Antifungal activity of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia and Salvia fruticosa essential oils against human pathogenic fungi. J Agric Food Chem. 1998;46:1739-45. DOI: 10.1021/jf9708296.10.1021/jf9708296 Search in Google Scholar

[21] Soković M, Vukojević J, Marin P, Brkić D, Vajs V, van Griensven LJLD. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules. 2009;14:238-49. DOI: 10.3390/molecules14010238.10.3390/molecules14010238625382519136911 Search in Google Scholar

[22] Kamatou GPP, Vermaak I, Viljoen AM, Lawrence BM. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry. 2013;96:15-25. DOI: 10.1016/j.phytochem.2013.08.005.10.1016/j.phytochem.2013.08.00524054028 Search in Google Scholar

[23] Di Pasqua R, Mamone G, Ferranti P, Ercolini D, Mauriello G. Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics. 2010;10(5):1040-9. DOI: 10.1002/pmic.200900568.10.1002/pmic.20090056820049861 Search in Google Scholar

[24] Di Pasqua R, Hoskins N, Betts G, Mauriello G. Changes in membrane fatty acids composition of microbial cells induced by addition of thymol, carvacrol, limonene, cinnamaldehyde and eugenol in the growing media. J Agric Food Chem. 2006;54(7):2745-9. DOI: 10.1021/jf052722l.10.1021/jf052722l16569070 Search in Google Scholar

[25] La Storia A, Ercolini D, Marinello F, Di Pasqua R, Villani F, Mauriello G. Atomic force microscopy analysis shows surface structure changes in carvacrol-treated bacterial cells. Res Microbiol. 2011;162(2):164-72. DOI: 10.1016/j.resmic.2010.11.006.10.1016/j.resmic.2010.11.00621168481 Search in Google Scholar

[26] Arfa AB, Combes S, Preziosi-Belloy L, Gontard N, Chalier P. Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol. 2006;43(2):149-54. DOI: 10.1111/j.1472-765X.2006.01938.x.10.1111/j.1472-765X.2006.01938.x16869897 Search in Google Scholar

[27] Veldhuizen EJA, Tjeerdsma-van Bokhoven JLM, Zweijtzer C, Burt SA, Haagsman HP. Structural requirements for the antimicrobial activity of carvacrol. J Agric Food Chem. 2006;54(5):1874-9. DOI: 10.1021/jf052564y.10.1021/jf052564y16506847 Search in Google Scholar

[28] Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: mode of action, synergies and interactions with food matrix components. Front Microbiol. 2012;3:1-24. DOI: 10.3389/fmicb.2012.00012.10.3389/fmicb.2012.00012326574722291693 Search in Google Scholar

[29] Patwardhan B, Vaidya DB, Chorghade M, Joshi SP. Reverse pharmacology and systems approaches for drug discovery and development. Curr Bioact Compd. 2008;4(4):201-12. DOI: 10.2174/157340708786847870.10.2174/157340708786847870 Search in Google Scholar

[30] Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G. Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem. 2007;55(12):4863-70. DOI: 10.1021/jf0636465.10.1021/jf063646517497876 Search in Google Scholar

[31] Ait-Ouazzou A, Cherrat L, Espina L, Lorán S, Rota C, Pagán R. The antimicrobial activity of hydrophobic essential oil constituents acting alone or in combined processes of food preservation. Innov Food Sci Emerg Technol. 2011;12(3):320-9. DOI: 10.1016/j.ifset.2011.04.004.10.1016/j.ifset.2011.04.004 Search in Google Scholar

[32] Trombetta D, Castelli F, Sarpietro MG, Venuti V, Cristani M, Daniele C, et al. Mechanisms of antibacterial action of three monoterpenes. Antimicrob Agents Chemother. 2005;49(6):2474-8. DOI: 10.1128/AAC.49.6.2474-2478.2005.10.1128/AAC.49.6.2474-2478.2005114051615917549 Search in Google Scholar

[33] Espina L, Somolinos M, Lorán S, Conchello P, García D, Pagán R. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control. 2011;22(6):896-902. DOI: 10.1016/j.foodcont.2010.11.021.10.1016/j.foodcont.2010.11.021 Search in Google Scholar

[34] De Souza EL, De Barros JC, De Oliveira CEV, Da Conceição ML. Influence of Origanum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics of Staphylococcus aureus. Int J Food Microbiol. 2010;137(2-3):308-11. DOI: 10.1016/j.ijfoodmicro.2009.11.025.10.1016/j.ijfoodmicro.2009.11.02520015563 Search in Google Scholar

[35] Pérez-Fons L, Aranda FJ, Guillén J, Villalaín J, Micol V. Rosemary (Rosmarinus officinalis) diterpenes affect lipidpolymorphism and fluidity in phospholipid membranes. Arch Biochem Biophys. 2006;453(2):224-36. DOI: 10.1016/j.abb.2006.07.004.10.1016/j.abb.2006.07.00416949545 Search in Google Scholar

[36] Horváth G, Kovács K, Kocsis B, Kustos I. Effect of thyme (Thymus vulgaris L.) essential oil and its main constituents on the outer membrane protein composition of Erwinia strains studied with microfluid chip technology. Chromatographia. 2009;70(11-12):1645-50. DOI: 10.1365/s10337-009-1374-7.10.1365/s10337-009-1374-7 Search in Google Scholar

[37] Silva F, Ferreira S, Duarte A, Mendonça DI, Domingues FC. Antifungal activity of Coriandrum sativum essential oil, its mode of action against Candida species and potential synergism with amphotericin B. Phytomedicine. 2011;19(1):42-7. DOI: 10.1016/j.phymed.2011.06.033.10.1016/j.phymed.2011.06.03321788125 Search in Google Scholar

[38] Silva F, Ferreira S, Queiroz JA, Domingues FC. Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. J Med Microbiol. 2011;60(Pt 10):1479-86. DOI: 10.1099/jmm.0.034157-0.10.1099/jmm.0.034157-021862758 Search in Google Scholar

[39] Hafedh H, Fethi BA, Mejdi S, Emira N, Amina B. Effect of Mentha longifolia L. ssp. longifolia essential oil on the morphology of four pathogenic bacteria visualized by atomic force microscopy. Afr J Microbiol Res. 2010;4(11):1122-7. Avalaible from: https://academicjournals.org/journal/AJMR/article-full-text-pdf/CAFD35F13401. Search in Google Scholar

[40] Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev. 2006;19(1):150-62. DOI: 10.1128/CMR.19.1.50-62.2006.10.1128/CMR.19.1.50-62.2006136027316418522 Search in Google Scholar

[41] Hammer KA, Carson CF, Riley TV. Antifungal effects of Melaleuca alternifolia (tea tree) oil and its components on Candida albicans, Candida glabrata and Saccharomyces cerevisiae. J Antimicrob Chemother. 2004;53(6):1081-5. DOI: 10.1093/jac/dkh243.10.1093/jac/dkh24315140856 Search in Google Scholar

[42] Li Y, Shao X, Xu J, Wei Y, Xu F, Wang H. Tea tree oil exhibits antifungal activity against Botrytis cinerea by affecting mitochondria. Food Chem. 2017;234:62-7. DOI: 10.1016/j.foodchem.2017.04.172.10.1016/j.foodchem.2017.04.17228551268 Search in Google Scholar

[43] Lee J, Seo S, Huh LS, Park I. Reactive oxygen species mediated-antifungal activity of cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils and their constituents against two phytopathogenic fungi. Pestic Biochem Physiol. 2020;168:104644. DOI: 10.1016/j.pestbp.2020.104644.10.1016/j.pestbp.2020.10464432711777 Search in Google Scholar

[44] Inouye S, Watanabe M, Nishiyama Y, Takeo K, Akao M, Yamaguchi H. Antisporulating and respiration-inhibitory effects of essential oils on filamentous fungi. Mycoses. 1998;41:403-10. DOI: 10.1111/j.1439-0507.1998.tb00361.x.10.1111/j.1439-0507.1998.tb00361.x9916464 Search in Google Scholar

[45] Geősel A, Szabó A, Akan O, Szarvas J. Effect of essential oil on mycopathogens of Agaricus bisporus. Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8), New Delhi, India, 19-22 November 2014: 530-5. Avalaible from: https://www.researchgate.net/publication/268815181_Effect_of_essential_oils_on_mycopathogens_of_Agaricus_bisporus. Search in Google Scholar

[46] Diánez F, Santos M, Parra C, Navarro MJ, Blanco R, Gea FJ. Screening of antifungal activity of 12 essential oils against eight pathogenic fungi of vegetables and mushroom. Lett Appl Microbiol. 2018;67(4):400-10. DOI: 10.1111/lam.13053.10.1111/lam.1305330022505 Search in Google Scholar

[47] Todorović B, Potočnik I, Rekanović E, Stepanović M, Kostić M, Ristić M, et al. Toxicity of twenty-two plant essential oils against pathogenic bacteria of vegetables and mushrooms. J Environ Sci Health B. 2016;51(12):832-9. DOI: 10.1080/03601234.2016.1208462.10.1080/03601234.2016.120846227494458 Search in Google Scholar

[48] Andila PS, Hendra IPA, Wardani PK, Tirta IG, Sutomo, Fardenan D. The phytochemistry of Cymbopogon winterianus essential oil from Lombok Island, Indonesia and its antifungal activity against phytopathogenic fungi. Nus Biosci. 2018;10:232-9. DOI: 10.13057/nusbiosci/n1004xx. Search in Google Scholar

[49] Cavalcanti AL, Aguiar YPC, Santos FGD, Cavalcanti AFC, Dias De Castro R. Susceptibility of Candida albicans and Candida non-albicans strains to essential oils. Biomed Pharmacol J. 2017;10:1101-7. DOI: 10.13005/bpj/1209.10.13005/bpj/1209 Search in Google Scholar

[50] Amornvit P, Choonharuangdej S, Srithavaj T. Lemongrass-incorporated tissue conditioner against Candida albicans culture. J Clin Diagn Res. 2014;8(7):ZC50-2. DOI: 10.7860/JCDR/2014/8378.4607.10.7860/JCDR/2014/8378.4607414914425177638 Search in Google Scholar

[51] Tanović B, Potočnik I, Delibašić G, Ristić M, Kostić M, Marković M. In vitro effect of essential oils from aromatic and medicinal plants on mushroom pathogens: Verticillium fungicola var. fungicola, Mycogone perniciosa, and Cladobotryum sp. Arch Biol Sci. Belgrade 2009;61(2):231-8. DOI: 10.2298/ABS0901231T. Search in Google Scholar

[52] Gea FJ, Navarro MJ, Santos M, Diánez F, Herraiz-Peñalver D. Screening and evaluation of essential oils from Mediterranean aromatic plants against the mushroom cobweb disease, Cladobotryum mycophilum. Agronomy. 2019;9(10):656-69. DOI: 10.3390/agronomy9100656.10.3390/agronomy9100656 Search in Google Scholar

[53] Tanović B, Potočnik I, Stanisavljević B, Đorđević M, Rekanović E. Response of Verticillium fungicola var. fungicola, Mycogone perniciosa and Cladobotyum sp. mushroom pathogens to some essential oils. Pestic Phytomed. (Belgrade) 2006;21:231-7. Avalaible from: https://scindeks-clanci.ceon.rs/data/pdf/0352-9029/2006/0352-90290603231T.pdf. Search in Google Scholar

[54] Das P, Dutta S, Begum J, Anwar MN. Antibacterial and antifungal activity analysis of essential oil of Pogostemon cablin (Blanco) Benth. Bangladesh J Microbiol. 2013;30(1-2):7-10. DOI: 10.3329/bjm.v30i1-2.28446.10.3329/bjm.v30i1-2.28446 Search in Google Scholar

[55] Kocevski D, Du M, Kan J, Jing C, Lačanin I, Pavlović H. Antifungal effect of Allium tuberosum, Cinnamomum cassia, and Pogostemon cablin essential oils and their components against population of Aspergillus species. J Food Sci. 2013;78:M731-7. DOI: 10.1111/1750-3841.12118.10.1111/1750-3841.1211823647469 Search in Google Scholar

[56] Karimi A. Characterization and antimicrobial activity of patchouli essential oil extracted from Pogostemon cablin [Blanco] Benth. [Lamiaceae]. Adv Environ Biol. 2014;8(7):2301-9. Avalaible from: http://www.aensiweb.com/old/aeb/2014/2301-2309.pdf. Search in Google Scholar

[57] Ultee A, Bennik MHJ, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol. 2002;68(4):1561-8. DOI: 10.1128/AEM.68.4.1561-1568.2002.10.1128/AEM.68.4.1561-1568.200212382611916669 Search in Google Scholar

[58] Radulović NS, Blagojević PD, Stojanović-Radić ZZ, Stojanović NM. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr Med Chem. 2013;20:932-52. DOI: 10.2174/0929867311320070008.10.2174/0929867311320070008 Search in Google Scholar

[59] Nikkah M, Hashemi M, Najafi M, Farhoosh R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int J Food Microbiol. 2017;18(257):285-94. DOI: 10.1016/j.ijfoodmicro.2017.06.021.10.1016/j.ijfoodmicro.2017.06.02128763743 Search in Google Scholar

[60] Hossain F, Follett P, Dang Vu K, Harich M, Salmieri S, Lacroix M. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol. 2016;53(Pt B):24-30. DOI: 10.1016/j.fm.2015.08.006.10.1016/j.fm.2015.08.00626678126 Search in Google Scholar

[61] Purkait S, Bhattacharya A, Bag A, Chattopadhyay RR. Synergistic antibacterial, antifungal and antioxidant efficacy of cinnamon and clove essential oils in combination. Arch Microbiol. 2020;202:1439-48. DOI: 10.1007/s00203-020-01858-3.10.1007/s00203-020-01858-332185411 Search in Google Scholar

[62] Lee J, Beuchat L, Kim H, Kim Y. Synergistic antimicrobial activity of oregano and thyme thymol essential oils against Leuconostoc citreum in a laboratory medium and tomato juice. Food Microbiol. 2020;90:103489. DOI: 10.1016/j.fm.2020.103489.10.1016/j.fm.2020.10348932336377 Search in Google Scholar

[63] Ayari S, Shankar S, Follett P, Hossain F, Lacroix M. Potential synergistic antimicrobial efficiency of binary combinations of essential oils against Bacillus cereus and Paenibacillus amylolyticus - Part A. Microb Pathog. 2020;141:104008. DOI: 10.1016/j.micpath.2020.104008.10.1016/j.micpath.2020.10400831991163 Search in Google Scholar

eISSN:
2084-4549
Język:
Angielski