Zacytuj

[1] Charlesworth S, De Miguel E, Ordóńez A. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ Geochem Health. 2011;33:103-23. DOI: 10.1007/s10653-010-9325-7.10.1007/s10653-010-9325-7 Search in Google Scholar

[2] Cui Y, Zhu YG, Zhai R, Huang Y, Qiu Y, Liang J. Exposure to metal mixtures and human health impacts in a contaminated area inNanning, China. EnvironInt. 2005;31(6):784-90. DOI: 10.1016/j.envint.2005.05.025.10.1016/j.envint.2005.05.025 Search in Google Scholar

[3] Majer BJ, Tscherko D, Paschke A, Wennrich R, Kundi M, Kandeler E, et al. Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutat Res. 2002;515:111-24. DOI: 10.1016/s1383-5718(02)00004-9.10.1016/S1383-5718(02)00004-9 Search in Google Scholar

[4] Pérez-de-Mora A, Madejón E, Burgos P, Cabrera F. Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation I. Soils. Sci Total Environ. 2006;363(1-3):28-37. DOI: 10.1016/j.scitotenv.2005.10.015.10.1016/j.scitotenv.2005.10.01516581109 Search in Google Scholar

[5] Khalil M. Efficiency of Trichoderma viride and Bacillus subtilis as biocontrol agents against root rot caused by Fusarium solani intomato. EgyptianJ Agric Res. 2019;97:507-16. DOI: 10.21608/ejar.2019.151891.10.21608/ejar.2019.151891 Search in Google Scholar

[6] Saba H, Vibhash D, Manisha M, Prashant KS, Farhan H, Tauseef A. Trichoderma - a promising plant growth stimulator and biocontrol agent. Mycosphere. 2012;3(4):524-31. DOI: 10.5943/mycosphere/3/4/14.10.5943/mycosphere/3/4/14 Search in Google Scholar

[7] Wang L, Li X. Steering soil microbiome to enhance soil system resilience. Crit Rev Microbiol. 2019;45:5-6. DOI: 10.1080/1040841X.2019.1700906.10.1080/1040841X.2019.170090631833440 Search in Google Scholar

[8] Ali EH, Hashem M. Removal efficiency of the heavy metals Zn(II), Pb(II) and Cd(II) by Saprolegnia delica and Trichoderma viride at different pH values and temperature degrees. Mycobiology. 2007;35(3):135-44. DOI: 10.4489/MYCO.2007.35.3.135.10.4489/MYCO.2007.35.3.135376314124015084 Search in Google Scholar

[9] Sahu A, Mandal A, Thakur J, Manna MC, Subba Rao A. Exploring bioaccumulation efficacy of Trichoderma viridae: Analternative bioremediationof cadmium and lead. Natl Acad Sci Lett. 2012;35(4):299-302. DOI: 10.1007/s40009-012-0056-4.10.1007/s40009-012-0056-4 Search in Google Scholar

[10] Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett. 2006;254(2):173-81. DOI: 10.1111/j.1574-6968.2005.00044.x.10.1111/j.1574-6968.2005.00044.x16445743 Search in Google Scholar

[11] Colpaert JV, Wevers JH, Krznaric E, Adriaensen K. How metaltolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals Forest Sci. 2011;68(1):17-24. DOI: 10.1007/s13595-010-0003-9.10.1007/s13595-010-0003-9 Search in Google Scholar

[12] Luo ZB, Chenhan Wu C, Zhang C, Li H, Lipka U, Polle A. The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environ Exper Bot. 2014;108:47-62. DOI: 10.1016/j.envexpbot.2013.10.018.10.1016/j.envexpbot.2013.10.018 Search in Google Scholar

[13] Schlunk I, Krause K, Wirth S, Kothe E. A transporter for abiotic stress and plant metabolite resistance in the ectomycorrhizal fungus Tricholoma vaccinum. Environ Sci Pollut Res Int. 2015;22(24):19384-93. DOI: 10.1007/s11356-014-4044-8.10.1007/s11356-014-4044-825563836 Search in Google Scholar

[14] Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Botany. 2002;53:1351-1365. DOI: 10.1093/jexbot/53.372.1351.10.1093/jexbot/53.372.1351 Search in Google Scholar

[15] Krupa P, Kozdrój J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut. 2007;182:83-90. DOI: 10.1007/s11270-006-9323-7.10.1007/s11270-006-9323-7 Search in Google Scholar

[16] Cabała J, Krupa P, Misz-Kennan M. Heavy metals in mycorrhizal rhizospheres contaminated by Zn-Pb mining and smelting around Olkusz in southern Poland. Water Air Soil Pollut. 2009;199:139-49. DOI: 10.1007/s11270-008-9866-x.10.1007/s11270-008-9866-x Search in Google Scholar

[17] Bano SA, Ashfaq D. Role of mycorrhiza to reduce heavy metal stress. Nat Sci. 2013;5(12A):16-20. DOI: 10.4236/ns.2013.512A003.10.4236/ns.2013.512A003 Search in Google Scholar

[18] Bandurska K, Krupa P, Berdowska A, Marczak M. Adaptation of selected ectomycorrhizal fungi to increased concentration of cadmium and lead. Ecol Chem Eng S. 2016;23(3):483-91. DOI: 10.1515/eces-2016-0035.10.1515/eces-2016-0035 Search in Google Scholar

[19] Weindling R. Trichoderma lignorum as parasite of other soil fungi. Phytopathology. 1932;22:837-45. Search in Google Scholar

[20] Benìtez T, Rincòn AM, Limòn MC, Codòn AC. Biocontrol mechanisms of Trichoderma strains. Int Microbiol. 2004;7(4):249-60. Available from: https://scielo.isciii.es/pdf/im/v7n4/Benitez.pdf. Search in Google Scholar

[21] John RP, Tyagi RD, Prévost D, Brar SK, Pouleur S, Surampalli RY. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot. 2010;29(12):1452-9. DOI: 10.1016/j.cropro.2010.08.004.10.1016/j.cropro.2010.08.004 Search in Google Scholar

[22] Chetan K, Sandhya M, Sarma BK, Singh SP, Singh HB. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol. 2014;98:533-44. DOI: 10.1007/s00253-013-5344-5.10.1007/s00253-013-5344-524276619 Search in Google Scholar

[23] Zin NA, Badaluddin NA. Biological functions of Trichoderma spp. for agriculture applications. Ann Agric Sci. 2020;65(2):168-78. DOI: 10.1016/j.aoas.2020.09.003.10.1016/j.aoas.2020.09.003 Search in Google Scholar

[24] Alfano G, Lewis Ivey MLC, Cakir C, Bos JIB, Miller SA, Madden LV, et al. Systemic modulation of gene expression in tomato by Trichoderma hamatum. Phytopathology. 2007;97:429-37. DOI: 10.1094/PHYTO-97-4-0429.10.1094/PHYTO-97-4-0429 Search in Google Scholar

[25] Violante A, Cozzolino V, Perelomo L, Caporale AG, Pigna M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr. 2010;10(3):268-92. DOI: 10.4067/S0718-95162010000100005.10.4067/S0718-95162010000100005 Search in Google Scholar

[26] Tchounwou P, Yedjou C, Patlolla A, Sutton D. Heavy metal toxicity and the environment. In: Luch A, editor. Molecular, Clinical and Environmental Toxicology. Experientia supplementum. Basel: Springer; 2012;101. DOI: 10.1007/978-3-7643-8340-4_6.10.1007/978-3-7643-8340-4_6 Search in Google Scholar

[27] Tessier A, Cambell PG, Bisson M. Sequential extraction procedure for the speciation of particulate tracemetals. Anal Chem. 1979;51(7):844-51. DOI: 10.1021/ac50043a017.10.1021/ac50043a017 Search in Google Scholar

[28] Bień J, Chlebowska-Ojrzyńska M, Zabochnicka-Świątek M. Ekstrakcja sekwencyjna w osadach ściekowych (Sequential extraction in sewage sludge). Proc ECOpole. 2011;5(1):173-8. Available from: https://drive.google.com/drive/folders/1tpAJ9F051yIW0vm3j0S6hbzez4q31QeD. Search in Google Scholar

[29] Kawai M. Artifical ectomicorrhiza formation on roots of air-layered Pinus densiflora saplings by inoculaton with Lycophyllum shimeji. Mycologia. 1997;89(2):228-32. DOI: 10.2307/3761075.10.2307/3761075 Search in Google Scholar

[30] Bandurska K, Krupa P, Berdowska A, Jatulewicz I. Use of saprophytic fungi specimens as a plant protection agents in tomatoe plantation. Ecol Eng. 2015;43:88-93. DOI: 10.12912/23920629/58908.10.12912/23920629/58908 Search in Google Scholar

[31] Polish Standard PN-ISO 10390:1997. Soil quality. Determination of pH. Polish Committee for Standardization, Warszawa. Available from: https://sklep.pkn.pl/pn-iso-10390-1997p.html. Search in Google Scholar

[32] Sastre J, Sahuquillo A, Vidal M, Rauret G. Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal Chim Acta. 2002; 462(1):59-72. DOI: 10.1016/S0003-2670(02)00307-0.10.1016/S0003-2670(02)00307-0 Search in Google Scholar

[33] Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019;6730305. DOI: 10.1155/2019/6730305.10.1155/2019/6730305 Search in Google Scholar

[34] Wang S, Wu Q-S, He X-H. Exogenous easily extractable glomalin-related soil protein promotes soil aggregation, relevant soil enzyme activities and plant growth in trifoliate orange. Plant Soil Environ. 2015;61(2):66-71. DOI: 10.17221/833/2014-PSE.10.17221/833/2014-PSE Search in Google Scholar

[35] Holda A, Kisielowska E. Biological removal of Cr(VI) ions from aqueous solutions by Trichoderma viride. Physicochem Probl Miner Process. 2013;49(1):47-60. DOI: 10.5277/ppmp130105. Search in Google Scholar

[36] Kacprzak M, Rosikoń K, Fijałkowski K, Grobelak A. The effect of Trichoderma on heavy metal mobility and uptake by Miscanthus giganteus, Salix sp., Phalaris arundinacea, and Panicum virgatum. Appl Environ Soil Sci. 2014;506142. DOI: 10.1155/2014/506142.10.1155/2014/506142 Search in Google Scholar

eISSN:
2084-4549
Język:
Angielski