Otwarty dostęp

Do We Still Need a Laboratory to Study Advanced Oxidation Processes? A Review of the Modelling of Radical Reactions used for Water Treatment

Ecological Chemistry and Engineering S's Cover Image
Ecological Chemistry and Engineering S
Special Issue: ECO-TECHNOLOGY AND ECO-INNOVATION FOR GREEN SUSTAINABLE GROWTH

Zacytuj

[1] Crutzen PJ, Wacławek S. Atmospheric chemistry and climate in the anthropocene (Chemia atmosferyczna i klimat w antropocenie). Chem Didact Ecol Metrol. 2015;19:9-28. DOI: 10.1515/cdem-2014-0001.10.1515/cdem-2014-0001 Search in Google Scholar

[2] Wacławek S, Černík M, Dionysiou DD. The Development and Challenges of Oxidative Abatement for Contaminants of Emerging Concern. A New Paradigm for Environmental Chemistry and Toxicology. Singapore: Springer Singapore; 2020. DOI: 10.1007/978-981-13-9447-8_10.10.1007/978-981-13-9447-8_10 Search in Google Scholar

[3] Wacławek S, Grübel K, Silvestri D, Padil VVT, Wacławek M, Černík M, et al. Disintegration of wastewater activated sludge (WAS) for improved biogas production. Energies. 2019;12:21. DOI: 10.3390/en12010021.10.3390/en12010021 Search in Google Scholar

[4] Silvestri D, Wacławek S, Stejskal V, Vlkova D, Kvapil P, Kohout P, et al. A pilot test in Eastern Bohemia for chlorinated aliphatic hydrocarbons groundwater remediation. CEST’19, 2019. Available from: https://cest2019.gnest.org/sites/default/files/presentation_file_list/cest2019_00918_posterf_paper.pdf. Search in Google Scholar

[5] Grübel K, Machnicka A, Nowicka E, Wacławek S. Mesophilic-thermophilic fermentation process of waste activated sludge after hybrid disintegration. Ecol Chem Eng S. 2014;21:125-36. DOI: 10.2478/eces-2014-0011.10.2478/eces-2014-0011 Search in Google Scholar

[6] Wacławek S, Grübel K, Chłąd Z, Dudziak M, Černík M. The impact of oxone on disintegration and dewaterability of waste activated sludge. Water Environ Res. 2016;88:152-7. DOI: 10.2175/106143016x14504669767139.10.2175/106143016X1450466976713926803102 Search in Google Scholar

[7] Wacławek S, Grübel K, Černík M. The impact of peroxydisulphate and peroxymonosulphate on disintegration and settleability of activated sludge. Environ Technol (United Kingdom). 2016;37:1296-304. DOI: 10.1080/09593330.2015.1112434.10.1080/09593330.2015.111243426503018 Search in Google Scholar

[8] Wacławek S, Grübel K, Chład Z, Dudziak M. Impact of peroxydisulphate on disintegration and sedimentation properties of municipal wastewater activated sludge. Chem Pap. 2015;69:1473-80. DOI: 10.1515/chempap-2015-0169.10.1515/chempap-2015-0169 Search in Google Scholar

[9] Wacławek S, Lutze HV, Grübel K, Padil VVT, Černík M, Dionysiou DD. Chemistry of persulfates in water and wastewater treatment: A review. Chem Eng J. 2017;330:44-62. DOI: 10.1016/j.cej.2017.07.132.10.1016/j.cej.2017.07.132 Search in Google Scholar

[10] Wacławek S, Padil VVT, Černík M. Major advances and challenges in heterogeneous catalysis for environmental applications: A review. Ecol Chem Eng S. 2018;25:9-34. DOI: 10.1515/ECES-2018-0001.10.1515/eces-2018-0001 Search in Google Scholar

[11] Tsitonaki A, Petri B, Crimi M, Mosbk H, Siegrist RL, Bjerg PL. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review. Crit Rev Environ Sci Technol. 2010;40:55-91. DOI: 10.1080/10643380802039303.10.1080/10643380802039303 Search in Google Scholar

[12] Tentscher PR, Lee M, von Gunten U. Micropollutant oxidation studied by quantum chemical computations: Methodology and applications to thermodynamics, kinetics, and reaction mechanisms. Acc Chem Res. 2019;52:605-14. DOI: 10.1021/acs.accounts.8b00610.10.1021/acs.accounts.8b0061030829468 Search in Google Scholar

[13] Tachikawa H, Iyama T, Abe S. DFT study on the interaction of fullerene (C-60) with hydroxyl radical (OH). In: Iwamoto M, Kaneto K, Otomo A, Onoda, M, editors. 9th Int Conf Nano-Molecular Electronics. 2011;14. DOI: 10.1016/j.phpro.2011.05.027.10.1016/j.phpro.2011.05.027 Search in Google Scholar

[14] Pabis A, Szala-Bilnik J, Swiatla-Wojcik D. Molecular dynamics study of the hydration of the hydroxyl radical at body temperature. Phys Chem Chem Phys. 2011;13:9458-68. DOI: 10.1039/c0cp02735a.10.1039/c0cp02735a21483962 Search in Google Scholar

[15] Shimizu E, Tokuyama Y, Okutsu N, Nomura K, Danilov VI, Kurita N. Attacking mechanism of hydroxyl radical to DNA base-pair: density functional study in vacuum and in water. J Biomol Struct Dyn. 2015;33:158-66. DOI: 10.1080/07391102.2013.864572.10.1080/07391102.2013.86457224460544 Search in Google Scholar

[16] Yamabe S, Tsuchida N, Yamazaki S. DFT Study of the hydroxyl radical addition to 2’-deoxyguanosine and the guanine base in four double-stranded B-form dimers. J Phys Chem B. 2020;124:1374-82. DOI: 10.1021/acs.jpcb.9b10330.10.1021/acs.jpcb.9b1033032011138 Search in Google Scholar

[17] Liu P, Wang Q, Niu M, Wang D. Multi-level quantum mechanics and molecular mechanics study of ring opening process of guanine damage by hydroxyl radical in aqueous solution. Sci Rep. 2017;7. DOI: 10.1038/s41598-017-08219-z.10.1038/s41598-017-08219-z555268728798372 Search in Google Scholar

[18] Lespade L. Ab initio molecular dynamics of free radical-induced oxidation of ergothioneine. J Mol Model. 2019;25. DOI: 10.1007/s00894-019-4220-3.10.1007/s00894-019-4220-331655910 Search in Google Scholar

[19] Koppenol WH. Oxygen activation by cytochrome P450: A thermodynamic analysis. J Am Chem Soc. 2007;129:9686-90. DOI: 10.1021/ja071546p.10.1021/ja071546p17629268 Search in Google Scholar

[20] Espinosa-Garcia J, Gutierrez-Merino C. The trapping of the OH radical by coenzyme Q. A theoretical and experimental study. J Phys Chem A. 2003;107:9712-23. DOI: 10.1021/jp035927a.10.1021/jp035927a Search in Google Scholar

[21] Hatipoglu A, Vione D, Yalcin Y, Minero C, Cinar Z. Photo-oxidative degradation of toluene in aqueous media by hydroxyl radicals. J Photochem Photobiol A: Chemistry. 2010;215:59-68. DOI: 10.1016/j.jphotochem.2010.07.021.10.1016/j.jphotochem.2010.07.021 Search in Google Scholar

[22] Asghar A, Abdul Raman AA, Wan Daud WMA, Ramalingam A. Reactivity, stability, and thermodynamic feasibility of H2O2/H2O at graphite cathode: Application of quantum chemical calculations in MFCs. Environ Prog Sustain Energy. 2018;37:1291-304. DOI: 10.1002/ep.12806.10.1002/ep.12806 Search in Google Scholar

[23] Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012;4:17. DOI: 10.1186/1758-2946-4-17.10.1186/1758-2946-4-17 Search in Google Scholar

[24] Neese F. The ORCA program system. WIREs Comput Mol Sci. 2012;2:73-8. DOI: 10.1002/wcms.81.10.1002/wcms.81 Search in Google Scholar

[25] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb M, Cheeseman JR, et al. Gaussian 16_C01 2016. Available from: https://gaussian.com/. Search in Google Scholar

[26] Lu T, Chen F. Atomic dipole moment corrected Hirshfeld population method. J Theor Comput Chem. 2012;11:163-83. DOI: 10.1142/S0219633612500113.10.1142/S0219633612500113 Search in Google Scholar

[27] Luo S, Gao L, Wei Z, Spinney R, Dionysiou DD, Hu WP, et al. Kinetic and mechanistic aspects of hydroxyl radical-mediated degradation of naproxen and reaction intermediates. Water Res. 2018;137:233-41. DOI: 10.1016/j.watres.2018.03.002.10.1016/j.watres.2018.03.002 Search in Google Scholar

[28] Krawczyk K, Wacławek S, Kudlek E, Silvestri D, Kukulski T, Grübel K, et al. UV-catalyzed persulfate oxidation of an anthraquinone based dye. Catalysts. 2020;10:456. DOI: 10.3390/catal10040456.10.3390/catal10040456 Search in Google Scholar

[29] Lu T, Chen F. Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem. 2012;33:580-92. DOI: 10.1002/jcc.22885.10.1002/jcc.22885 Search in Google Scholar

[30] Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph. 1996;14:33-8. DOI: 10.1016/0263-7855(96)00018-5.10.1016/0263-7855(96)00018-5 Search in Google Scholar

[31] VMD a molecular visualization program, Webpage. Available from: http://www.ks.uiuc.edu/Research/vmd/. Search in Google Scholar

[32] Toro-Labbé A, Jaque P, Murray JS, Politzer P. Connection between the average local ionization energy and the Fukui function. Chem Phys Lett. 2005;407:143-6. DOI: 10.1016/j.cplett.2005.03.041.10.1016/j.cplett.2005.03.041 Search in Google Scholar

[33] Johnson N, Russell I. Advances in Wool Technology. Woodhead Publishing Ltd.; 2008. ISBN: 9781845693329. Available from: http://hdl.handle.net/2086/9354.10.1533/9781845695460 Search in Google Scholar

[34] Cinar Z. The role of molecular modeling in TiO2 photocatalysis. Molecules. 2017;22:556. DOI: 10.3390/molecules22040556.10.3390/molecules22040556615465628358308 Search in Google Scholar

[35] Zhang S, Yu G, Chen J, Zhao Q, Zhang X, Wang B, et al. Elucidating ozonation mechanisms of organic micropollutants based on DFT calculations: Taking sulfamethoxazole as a case. Environ Pollut. 2017;220:971-80. DOI: 10.1016/J.ENVPOL.2016.10.076.10.1016/j.envpol.2016.10.07627884467 Search in Google Scholar

[36] Psutka JM, Dion-Fortier A, Dieckmann T, Campbell JL, Segura PA, Hopkins WS. Identifying Fenton-reacted trimethoprim transformation products using differential mobility spectrometry. Anal Chem. 2018;90:5352-7. DOI: 10.1021/acs.analchem.8b00484.10.1021/acs.analchem.8b0048429570980 Search in Google Scholar

[37] Lecours MA, Eysseric E, Yargeau V, Lessard J, Brisard G, Segura P, et al. Electrochemistry-high resolution mass spectrometry to study oxidation products of trimethoprim. Environments. 2018;5:18. DOI: 10.3390/environments5010018.10.3390/environments5010018 Search in Google Scholar

[38] Dittmer A, Izsák R, Neese F, Maganas D. Accurate band gap predictions of semiconductors in the framework of the similarity transformed equation of motion coupled cluster theory. Inorg Chem. 2019;58:9303-15. DOI: 10.1021/acs.inorgchem.9b00994.10.1021/acs.inorgchem.9b00994675075031240911 Search in Google Scholar

[39] Kamath D, Mezyk SP, Minakata D. Elucidating the elementary reaction pathways and kinetics of hydroxyl radical-induced acetone degradation in aqueous phase advanced oxidation processes. Environ Sci Technol. 2018;52:7763-74. DOI: 10.1021/acs.est.8b00582.10.1021/acs.est.8b0058229923393 Search in Google Scholar

[40] Maeda S, Harabuchi Y, Ono Y, Taketsugu T, Morokuma K. Intrinsic reaction coordinate: Calculation, bifurcation, and automated search. Int J Quantum Chem. 2015;115:258-69. DOI: 10.1002/qua.24757.10.1002/qua.24757 Search in Google Scholar

[41] Serobatse KRN, Kabanda MM. An appraisal of the hydrogen atom transfer mechanism for the reaction between thiourea derivatives and center dot OH radical: A case-study of dimethylthiourea and diethylthiourea. Comput Theor Chem. 2017;1101:83-95. DOI: 10.1016/j.comptc.2016.12.027.10.1016/j.comptc.2016.12.027 Search in Google Scholar

[42] Moc J, Simmie JM. Hydrogen abstraction from n-butanol by the hydroxyl radical: high level ab initio study of the relative significance of various abstraction channels and the role of weakly bound intermediates. J Phys Chem A. 2010;114:5558-64. DOI: 10.1021/jp1009065.10.1021/jp100906520380410 Search in Google Scholar

[43] Cinar SA, Ziylan-Yavas A, Catak S, Ince NH, Aviyente V. Hydroxyl radical-mediated degradation of diclofenac revisited: a computational approach to assessment of reaction mechanisms and by-products. Environ Sci Pollut Res. 2017;24:18458-69. DOI: 10.1007/s11356-017-9482-7.10.1007/s11356-017-9482-728643284 Search in Google Scholar

[44] Canneaux S, Bohr F, Henon E. KiSThelP: A program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem. 2014;35:82-93. DOI: 10.1002/jcc.23470.10.1002/jcc.2347024190715 Search in Google Scholar

[45] Aydogdu S, Hatipoglu A. Theoretical investigation on the kinetics of dimethyl phosphoramidate with hydroxyl radicals. J Indian Chem Soc. 2019;96:1117-22. Search in Google Scholar

[46] Xiao R, Gao L, Wei Z, Spinney R, Luo S, Wang D, et al. Mechanistic insight into degradation of endocrine disrupting chemical by hydroxyl radical: An experimental and theoretical approach. Environ Pollut. 2017;231:1446-52. DOI: 10.1016/j.envpol.2017.09.006.10.1016/j.envpol.2017.09.00628917817 Search in Google Scholar

[47] Li X, Wang B, Wang Y, Li K, Yu G. Synergy effect of E-peroxone process in the degradation of structurally diverse pharmaceuticals: A QSAR analysis. Chem Eng J. 2019;360:1111-8. DOI: 10.1016/J.CEJ.2018.10.191.10.1016/j.cej.2018.10.191 Search in Google Scholar

[48] Sudhakaran S, Calvin J, Amy GL. QSAR models for the removal of organic micropollutants in four different river water matrices. Chemosphere. 2012;87:144-50. DOI: 10.1016/J.CHEMOSPHERE.2011.12.006.10.1016/j.chemosphere.2011.12.00622245076 Search in Google Scholar

[49] Lee Y, von Gunten U. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Res. 2012;46:6177-95. DOI: 10.1016/J.WATRES.2012.06.006.10.1016/j.watres.2012.06.00622939392 Search in Google Scholar

[50] Luo S, Wei Z, Dionysiou DD, Spinney R, Hu WP, Chai L, et al. Mechanistic insight into reactivity of sulfate radical with aromatic contaminants through single-electron transfer pathway. Chem Eng J. 2017;327:1056-65. DOI: 10.1016/j.cej.2017.06.179.10.1016/j.cej.2017.06.179 Search in Google Scholar

[51] Liu Y, Cheng Z, Liu S, Tan Y, Yuan T, Yu X, et al. Quantitative structure activity relationship (QSAR) modelling of the degradability rate constant of volatile organic compounds (VOCs) by OH radicals in atmosphere. Sci Total Environ. 2020;729:138871. DOI: 10.1016/j.scitotenv.2020.138871.10.1016/j.scitotenv.2020.13887132361444 Search in Google Scholar

[52] Sudhakaran S, Amy GL. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification. Water Res. 2013;47:1111-22. DOI: 10.1016/j.watres.2012.11.033.10.1016/j.watres.2012.11.03323260175 Search in Google Scholar

[53] Luo X, Wei X, Chen J, Xie Q, Yang X, Peijnenburg WJGM. Rate constants of hydroxyl radicals reaction with different dissociation species of fluoroquinolones and sulfonamides: Combined experimental and QSAR studies. Water Res. 2019;166. DOI: 10.1016/j.watres.2019.115083.10.1016/j.watres.2019.11508331541794 Search in Google Scholar

[54] Jia L, Shen Z, Guo W, Zhang Y, Zhu H, Ji W, et al. QSAR models for oxidative degradation of organic pollutants in the Fenton process. J Taiwan Inst Chem Eng. 2015;46:140-7. DOI: 10.1016/J.JTICE.2014.09.014.10.1016/j.jtice.2014.09.014 Search in Google Scholar

[55] Su H, Yu C, Zhou Y, Gong L, Li Q, Alvarez PJJ, et al. Quantitative structure-activity relationship for the oxidation of aromatic organic contaminants in water by TAML/H2O2. Water Res. 2018;140:354-63. DOI: 10.1016/J.WATRES.2018.04.062.10.1016/j.watres.2018.04.06229751317 Search in Google Scholar

[56] Cheng Z, Yang B, Chen Q, Tan Y, Gao X, Yuan T, et al. 2D-QSAR and 3D-QSAR simulations for the reaction rate constants of organic compounds in ozone-hydrogen peroxide oxidation. Chemosphere. 2018;212:828-36. DOI: 10.1016/J.CHEMOSPHERE.2018.08.097.10.1016/j.chemosphere.2018.08.09730193231 Search in Google Scholar

[57] Gupta S, Basant N. Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach. Environ Sci Pollut Res. 2017;24:24936-46. DOI: 10.1007/s11356-017-0161-5.10.1007/s11356-017-0161-528918607 Search in Google Scholar

[58] Heeb MB, Criquet J, Zimmermann-Steffens SG, von Gunten U. Oxidative treatment of bromide-containing waters: Formation of bromine and its reactions with inorganic and organic compounds - A critical review. Water Res. 2014;48:15-42. DOI: 10.1016/J.WATRES.2013.08.030.10.1016/j.watres.2013.08.03024184020 Search in Google Scholar

[59] Lee H, Park SH, Kim BH, Kim SJ, Kim SC, Seo SG, et al. Contribution of dissolved oxygen to methylene blue decomposition by hybrid advanced oxidation processes system. Int J Photoenergy. 2012;2012:1-6. DOI: 10.1155/2012/305989.10.1155/2012/305989 Search in Google Scholar

[60] Zhang R, Wang X, Zhou L, Liu Z, Crump D. The impact of dissolved oxygen on sulfate radical-induced oxidation of organic micro-pollutants: A theoretical study. Water Res. 2018;135:144-54. DOI: 10.1016/J.WATRES.2018.02.028.10.1016/j.watres.2018.02.02829466718 Search in Google Scholar

[61] Xie Y, Schaefer HF. Hydrogen bonding between the water molecule and the hydroxyl radical (H2O · HO): The global minimum. J Chem Phys. 1993;98:8829-34. DOI: 10.1063/1.464492.10.1063/1.464492 Search in Google Scholar

[62] Kim KS, Kim HS, Jang JH, Kim HS, Mhin BJ, Xie Y, et al. Hydrogen bonding between the water molecule and the hydroxyl radical (H2O·OH): The 2A″ and 2A′ minima. J Chem Phys. 1991;94:2057-62. DOI: 10.1063/1.459927.10.1063/1.459927 Search in Google Scholar

[63] Dubey MK, Mohrschladt R, Donahue NM, Anderson JG. Isotope specific kinetics of hydroxyl radical (OH) with water (H2O): Testing models of reactivity and atmospheric fractionation. J Phys Chem A. 1997;101:1494-500. DOI: 10.1021/jp962332p.10.1021/jp962332p Search in Google Scholar

[64] Vassilev P, Louwerse MJ, Baerends EJ. Hydroxyl radical and hydroxide ion in liquid water: A comparative electron density functional theory study. J Phys Chem B. 2005;109:23605-10. DOI: 10.1021/jp044751p.10.1021/jp044751p16375337 Search in Google Scholar

[65] Allodi MA, Dunn ME, Livada J, Kirschner KN, Shields GC. Do hydroxyl radical-water clusters, OH(H2O)(n), n=1-5, exist in the atmosphere? J Phys Chem A. 2006;110:13283-9. DOI: 10.1021/jp064468l.10.1021/jp064468l17149847 Search in Google Scholar

[66] Belair SD, Francisco JS, Singer SJ. Hydrogen bonding in cubic (H2O)(8) and OH center dot((HO)-O-2)(7) clusters. Phys Rev A. 2005;71. DOI: 10.1103/PhysRevA.71.013204.10.1103/PhysRevA.71.013204 Search in Google Scholar

[67] Voglozin D, Cooper P. Altitude profile of the OH radical complex with water in Earth’s atmosphere: a quantum mechanical approach. J Atmos Chem. 2017;74:475-89. DOI: 10.1007/s10874-016-9353-5.10.1007/s10874-016-9353-5 Search in Google Scholar

[68] Park JH. Ab initio study on the complex forming reaction of OH and H2O in the gas phase. Asian J Atmos Environ. 2015;9:158-64. DOI: 10.5572/ajae.2015.9.2.158.10.5572/ajae.2015.9.2.158 Search in Google Scholar

[69] Schofield DP, Kjaergaard HG. High-level ab initio studies of the electronic excited states of the hydroxyl radical and water-hydroxyl complex. J Chem Phys. 2004;120:6930-4. DOI: 10.1063/1.1687335.10.1063/1.168733515267591 Search in Google Scholar

[70] Soloveichik P, O’Donnell BA, Lester MI, Francisco JS, McCoy AB. Infrared spectrum and stability of the H2O-HO complex: Experiment and theory. J Phys Chem A. 2010;114:1529-38. DOI: 10.1021/jp907885d.10.1021/jp907885d19831340 Search in Google Scholar

[71] Crespo-Otero R, Sanchez-Garcia E, Suardiaz R, Montero LA, Sander W. Interactions between simple radicals and water. Chem Phys. 2008;353:193-201. DOI: 10.1016/j.chemphys.2008.08.012.10.1016/j.chemphys.2008.08.012 Search in Google Scholar

[72] Zhou Z, Qu Y, Fu A, Du B, He F, Gao H. Density functional complete study of hydrogen bonding between the water molecule and the hydroxyl radical (H2O · HO). Int J Quantum Chem. 2002;89:550-8. DOI: 10.1002/qua.10315.10.1002/qua.10315 Search in Google Scholar

[73] Gonzalez J, Anglada JM. Gas phase reaction of nitric acid with hydroxyl radical without and with water. A theoretical investigation. J Phys Chem A. 2010;114:9151-62. DOI: 10.1021/jp102935d.10.1021/jp102935d20681542 Search in Google Scholar

[74] Buszek RJ, Torrent-Sucarrat M, Anglada JM, Francisco JS. Effects of a single water molecule on the OH + H2O2 reaction. J Phys Chem A. 2012;116:5821-9. DOI: 10.1021/jp2077825.10.1021/jp207782522455374 Search in Google Scholar

[75] Domin D, Braida B, Berges J. Influence of water on the oxidation of dimethyl sulfide by the (OH)-O-center dot radical. J Phys Chem B. 2017;121:9321-30. DOI: 10.1021/acs.jpcb.7b05796.10.1021/acs.jpcb.7b0579628895743 Search in Google Scholar

[76] Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113:6378-96. DOI: 10.1021/jp810292n.10.1021/jp810292n19366259 Search in Google Scholar

[77] Manonmani G, Sandhiya L, Senthilkumar K. Mechanism and kinetics of diuron oxidation initiated by hydroxyl radical: hydrogen and chlorine atom abstraction reactions. J Phys Chem A. 2019;123:8954-67. DOI: 10.1021/acs.jpca.9b04800.10.1021/acs.jpca.9b0480031498618 Search in Google Scholar

[78] Minakata D, Crittenden J. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation. Environ Sci Technol. 2011;45:3479-86. DOI: 10.1021/es1020313.10.1021/es102031321410278 Search in Google Scholar

[79] Codorniu-Hernandez E, Kusalik PG. Insights into the solvation and mobility of the hydroxyl radical in aqueous solution. J Chem Theory Comput. 2011;7:3725-32. DOI: 10.1021/ct200418e.10.1021/ct200418e26598267 Search in Google Scholar

[80] Karakus N, Ozkan R. Ab initio study of atmospheric reactions of the hydroxyl radical-water complex (OH-H2O) with saturated hydrocarbons (methane, ethane and propane). J Mol Struct. 2005;724:39-44. DOI: 10.1016/j.theochem.2004.10.075.10.1016/j.theochem.2004.10.075 Search in Google Scholar

[81] Mansergas A, Gonzalez J, Ruiz-Lopez M, Anglada JM. The gas phase reaction of carbonyl oxide with hydroxyl radical in presence of water vapor. A theoretical study on the reaction mechanism. Comput Theor Chem. 2011;965:313-20. DOI: 10.1016/j.comptc.2011.02.023.10.1016/j.comptc.2011.02.023 Search in Google Scholar

[82] Gonzalez J, Anglada JM, Buszek RJ, Francisco JS. Impact of water on the OH plus HOCl reaction. J Am Chem Soc. 2011;133:3345-53. DOI: 10.1021/ja100976b.10.1021/ja100976b21319861 Search in Google Scholar

[83] Liu P, Li C, Wang S, Wang D. Catalytic effect of aqueous solution in water-assisted proton-transfer mechanism of 8-hydroxy guanine radical. J Phys Chem B. 2018;122:3124-32. DOI: 10.1021/acs.jpcb.7b09965.10.1021/acs.jpcb.7b0996529518332 Search in Google Scholar

[84] Suma K, Sumiyoshi Y, Endo Y. The rotational spectrum and structure of the HOOO radical. Science. 2005;308:1885-6. DOI: 10.1126/science.1112233.10.1126/science.111223315879172 Search in Google Scholar

[85] Gmurek M, Olak-Kucharczyk M, Ledakowicz S. Photochemical decomposition of endocrine disrupting compounds - A review. Chem Eng J. 2017;310:437-56. DOI: 10.1016/j.cej.2016.05.014.10.1016/j.cej.2016.05.014 Search in Google Scholar

[86] Duan X, Sun H, Wang S. Metal-free carbocatalysis in advanced oxidation reactions. Acc Chem Res. 2018;51:678-87. DOI: 10.1021/acs.accounts.7b00535.10.1021/acs.accounts.7b00535 Search in Google Scholar

[87] Fan J, Qin H, Jiang S. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: The role of superoxide anion and singlet oxygen. Chem Eng J. 2019;359:723-32. DOI: 10.1016/j.cej.2018.11.165.10.1016/j.cej.2018.11.165 Search in Google Scholar

[88] Lee J, von Gunten U, Kim JH. Persulfate-based advanced oxidation: Critical assessment of opportunities and roadblocks. Environ Sci Technol. 2020;54:3064-81. DOI: 10.1021/acs.est.9b07082.10.1021/acs.est.9b07082 Search in Google Scholar

[89] Codorniu-Hernandez E, Hall KW, Boese AD, Ziemianowicz D, Carpendale S, Kusalik PG. Mechanism of O(P-3) formation from a hydroxyl radical pair in aqueous solution. J Chem Theory Comput. 2015;11:4740-8. DOI: 10.1021/acs.jctc.5b00783.10.1021/acs.jctc.5b00783 Search in Google Scholar

[90] Howell CD, Michelangeli DV, Allen M, Yuk LY, Thomas RJ. SME observations of O2 (1Δg) nightglow: An assessment of the chemical production mechanisms. Planet Space Sci. 1990;38:529-37. DOI: 10.1016/0032-0633(90)90145-G.10.1016/0032-0633(90)90145-G Search in Google Scholar

[91] Vlasov MN, Klopovsky KS, Lopaev DV, Popov NA, Rakhimov AT, Rakhimova TV. The mechanism of singlet oxygen emission in the upper atmosphere. Cosm Res. 1997;35:219-25. Search in Google Scholar

[92] Tarasick DW, Evans WFJ. A review of the O2 (a1Δg) and O2 (b1Σg+) airglow emissions. Adv Sp Res. 1993;13:145-8. DOI: 10.1016/0273-1177(93)90014-3.10.1016/0273-1177(93)90014-3 Search in Google Scholar

[93] Zakharov II, Loriya MG, Tselishchev AB. Structure of the HOO-N=N-OOH intermediate in hydrogen peroxide activation of N2: Quantum chemical DFT calculations. J Struct Chem. 2013;54:10-6. DOI: 10.1134/S0022476613010022.10.1134/S0022476613010022 Search in Google Scholar

[94] Wang B, Hou H, Gu Y. Existence of hydrogen bonding between the hydroxyl radical and hydrogen peroxide: OH·H2O2. Chem Phys Lett. 1999;309:274-8. DOI: 10.1016/S0009-2614(99)00686-7.10.1016/S0009-2614(99)00686-7 Search in Google Scholar

[95] Yamaguchi M. Hemibonding of hydroxyl radical and halide anion in aqueous solution. J Phys Chem A. 2011;115:14620-8. DOI: 10.1021/jp2063386.10.1021/jp206338622136588 Search in Google Scholar

[96] Sevilla MD, Summerfield S, Eliezer I, Rak J, Symons MCR. Interaction of the chlorine atom with water: ESR and ab initio MO evidence for three-electron (sigma(2)sigma{*}(1)) bonding. J Phys Chem A. 1997;101:2910-5. DOI: 10.1021/jp964097g.10.1021/jp964097g Search in Google Scholar

[97] Shah S, Hao C. Quantum chemical investigation on photodegradation mechanisms of sulfamethoxypyridazine with dissolved inorganic matter and hydroxyl radical. J Environ Sci. 2017;57:85-92. DOI: 10.1016/j.jes.2016.09.023.10.1016/j.jes.2016.09.02328647269 Search in Google Scholar

[98] O’Donnell BA, Li EXJ, Lester MI, Francisco JS. Spectroscopic identification and stability of the intermediate in the OH+HONO2 reaction. Proc Natl Acad Sci USA. 2008;105:12678-83. DOI: 10.1073/pnas.0800320105.10.1073/pnas.0800320105252908118678905 Search in Google Scholar

[99] Martins-Costa MTC, Ruiz-Lopez MF. Molecular dynamics of hydrogen peroxide in liquid water using a combined quantum/classical force field. Chem Phys. 2007;332:341-7. DOI: 10.1016/j.chemphys.2006.12.018.10.1016/j.chemphys.2006.12.018 Search in Google Scholar

[100] Jin X, Peldszus S, Huck PM. Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes. Water Res. 2012;46:6519-30. DOI: 10.1016/J.WATRES.2012.09.026.10.1016/j.watres.2012.09.02623079129 Search in Google Scholar

[101] Barbusinski K. Fenton reaction - Controversy concerning the chemistry. Ecol Chem Eng S. 2009;16:347-58. Available from: https://drive.google.com/file/d/16kMQeMGRupbWPc4yhlKh48Uy2wH3g2vG/view. Search in Google Scholar

[102] Kuznetsov ML, Teixeira FA, Bokach NA, Pombeiro AJL, Shul’pin GB. Radical decomposition of hydrogen peroxide catalyzed by aqua complexes {[}M(H2O)(n)](2+) (M = Be, Zn, Cd). J Catal. 2014;313:135-48. DOI: 10.1016/j.jcat.2014.03.010.10.1016/j.jcat.2014.03.010 Search in Google Scholar

[103] Novikov AS, Kuznetsov ML, Pombeiro AJL, Bokach NA, Shul’pin GB. Generation of HO center dot radical from hydrogen peroxide catalyzed by aqua complexes of the group III metals {[}M(H2O)(n)](3+) (M = Ga, In, Sc, Y, or La): A theoretical study. ACS Catal. 2013;3:1195-208. DOI: 10.1021/cs400155q.10.1021/cs400155q Search in Google Scholar

[104] Chen HY. Why the reactive oxygen species of the fenton reaction switches from oxoiron(IV) species to hydroxyl radical in phosphate buffer solutions? A Computational Rationale. ACS Omega. 2019;4:14105-13. DOI: 10.1021/acsomega.9b02023.10.1021/acsomega.9b02023671454231497730 Search in Google Scholar

[105] Duan X, Yang S, Wacławek S, Fang G, Xiao R, Dionysiou DD. Limitations and prospects of sulfate-radical based advanced oxidation processes. J Environ Chem Eng. 2020;8:103849. DOI: 10.1016/j.jece.2020.103849.10.1016/j.jece.2020.103849 Search in Google Scholar

[106] Buda F, Ensing B, Gribnau MCM, Baerends EJ. DFT study of the active intermediate in the Fenton reaction. Chem Eur J. 2001;7:2775-83. DOI: 10.1002/1521-3765(20010702)7:13<2775::AID-CHEM2775>3.0.CO; 2-6. Search in Google Scholar

[107] Ensing B, Buda F, Blöchl PE, Baerends EJ. A Car-Parrinello study of the formation of oxidizing intermediates from Fenton’s reagent in aqueous solution. Phys Chem Chem Phys. 2002;4:3619-27. DOI: 10.1039/b201864k.10.1039/b201864k Search in Google Scholar

[108] Ensing B, Baerends EJ. Reaction path sampling of the reaction between iron(II) and hydrogen peroxide in aqueous solution. J Phys Chem A. 2002;106:7902-10. DOI: 10.1021/jp025833l.10.1021/jp025833l Search in Google Scholar

[109] Ensing B, Buda F, Blöchl P, Baerends EJ. Chemical involvement of solvent water molecules in elementary steps of the Fenton oxidation reaction. Angew Chemie. 2001;113:2977-9. DOI: 10.1002/1521-3757(20010803)113:15<2977::aid-ange2977>3.0.co;2-q.10.1002/1521-3757(20010803)113:15<2977::AID-ANGE2977>3.0.CO;2-Q Search in Google Scholar

[110] Yamamoto N, Koga N, Nagaoka M. Ferryl-oxo species produced from Fenton’s reagent via a two-step pathway: Minimum free-energy path analysis. J Phys Chem B. 2012;116:14178-82. DOI: 10.1021/jp310008z.10.1021/jp310008z Search in Google Scholar

[111] Petit AS, Pennifold RCR, Harvey JN. Electronic structure and formation of simple ferryloxo complexes: Mechanism of the Fenton reaction. Inorg Chem. 2014;53:6473-81. DOI: 10.1021/ic500379r.10.1021/ic500379r Search in Google Scholar

[112] Lu HF, Chen HF, Kao CL, Chao I, Chen HY. A computational study of the Fenton reaction in different pH ranges. Phys Chem Chem Phys. 2018;20:22890-901. DOI: 10.1039/C8CP04381G.10.1039/C8CP04381G Search in Google Scholar

[113] Lutze HV, Brekenfeld J, Naumov S, von Sonntag C, Schmidt TC. Degradation of perfluorinated compounds by sulfate radicals - New mechanistic aspects and economical considerations. Water Res. 2018;129:509-19. DOI: 10.1016/j.watres.2017.10.067.10.1016/j.watres.2017.10.067 Search in Google Scholar

[114] The 1998 Nobel Prizes. Econ. 1998:97. Available from: https://www.economist.com/science-and-technology/1998/10/15/picking-winners Search in Google Scholar

[115] Liu F, Sanchez DM, Kulik HJ, Martínez TJ. Exploiting graphical processing units to enable quantum chemistry calculation of large solvated molecules with conductor-like polarizable continuum models. Int J Quantum Chem. 2019;119:e25760. DOI: 10.1002/qua.25760.10.1002/qua.25760 Search in Google Scholar

[116] Cheng J, Hu D, Yao A, Gao Y, Asadi H. A computational study on the Pd-decorated ZnO nanocluster for H2 gas sensing: A comparison with experimental results. Phys E Low-Dimensional Syst Nanostructures. 2020;124:114237. DOI: 10.1016/j.physe.2020.114237.10.1016/j.physe.2020.114237 Search in Google Scholar

[117] Mei Q, Cao H, Han D, Li M, Yao S, Xie J, et al. J Hazard Mater. 2020;389:121901. DOI: 10.1016/j.jhazmat.2019.121901.10.1016/j.jhazmat.2019.121901 Search in Google Scholar

eISSN:
2084-4549
Język:
Angielski