Otwarty dostęp

Switching from petro-plastics to microbial polyhydroxyalkanoates (PHA): the biotechnological escape route of choice out of the plastic predicament?

   | 25 sty 2019

Zacytuj

Haider TP, Völker C, Kramm J, Landfester K, Wurm FR. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Edit 2019; 58(1): 50-62.10.1002/anie.201805766HaiderTPVölkerCKrammJLandfesterKWurmFRPlastics of the future? The impact of biodegradable polymers on the environment and on societyAngew Chem Int Edit20195815062Open DOISearch in Google Scholar

Mathuriya AS, Yakhmi JV. Polyhydroxyalkanoates: Biodegradable Plastics and Their Applications. In: Martínez LM, Kharissova OV, Kharisov BI (Eds.): Handbook of Ecomaterials, 2017, pp. 1-29.MathuriyaASYakhmiJVPolyhydroxyalkanoates: Biodegradable Plastics and Their ApplicationsMartínezLMKharissovaOVKharisovBIHandbook of Ecomaterials2017129Search in Google Scholar

Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017; 3(7): e1700782.2877603610.1126/sciadv.1700782GeyerRJambeckJRLawKLProduction, use, and fate of all plastics ever madeSci Adv201737e1700782Search in Google Scholar

Online resource 1: Last accessed June 25th, 2018 (in German) https://www.kleinezeitung.at/meinung/meinungktnhp/5438453/Kampf-gegen-Plastikmuell_Es-endet-nicht-beim-TrinkhalmOnline resource 1: Last accessed June 25th2018in Germanhttps://www.kleinezeitung.at/meinung/meinungktnhp/5438453/Kampf-gegen-Plastikmuell_Es-endet-nicht-beim-TrinkhalmSearch in Google Scholar

Online resource 2: Last accessed June 25th, 2018 (in German) https://www.kleinezeitung.at/service/newsticker/5439715/Thailand_Wal-verendete-an-ueber-80-Plastiksackerln-im-MagenOnline resource 2: Last accessed June 25th2018in Germanhttps://www.kleinezeitung.at/service/newsticker/5439715/Thailand_Wal-verendete-an-ueber-80-Plastiksackerln-im-MagenSearch in Google Scholar

Online resource 3: Last accessed June 25th, 2018 (in German) https://www.kleinezeitung.at/international/tiere/5533182/In-Indonesien-gefunden_Toter-Wal-mit-ueber-1100-Plastikteilen-imOnline resource 3: Last accessed June 25th2018in Germanhttps://www.kleinezeitung.at/international/tiere/5533182/In-Indonesien-gefunden_Toter-Wal-mit-ueber-1100-Plastikteilen-imSearch in Google Scholar

Gajšt T, Bizjak T, Palatinus A, Liubartseva S, Kržan A. Sea surface microplastics in Slovenian part of the Northern Adriatic. Mar Pollut Bull 2016; 113(1-2): 392-399.10.1016/j.marpolbul.2016.10.03127771097GajštTBizjakTPalatinusALiubartsevaSKržanASea surface microplastics in Slovenian part of the Northern AdriaticMar Pollut Bull20161131-2392399Open DOISearch in Google Scholar

Cesa FS, Turra A, Baruque-Ramos J. Synthetic fibers as microplastics in the marine environment: a review from textile perspective with a focus on domestic washings. Sci Total Environ 2017; 598: 1116-11292848245910.1016/j.scitotenv.2017.04.172CesaFSTurraABaruque-RamosJSynthetic fibers as microplastics in the marine environment: a review from textile perspective with a focus on domestic washingsSci Total Environ201759811161129Search in Google Scholar

Fonseca MMA, Gamarro EG, Toppe J, Bahri T, Barg U. The Impact of Microplastics on Food Safety: the Case of Fishery and Aquaculture Products. FAO Aquaculture Newsletter 2017; 57: 43-45.FonsecaMMAGamarroEGToppeJBahriTBargUThe Impact of Microplastics on Food Safety: the Case of Fishery and Aquaculture ProductsFAO Aquaculture Newsletter2017574345Search in Google Scholar

Bouwmeester H, Hollman PC, Peters RJ. Potential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicology. Environ Sci Technol 2015; 49(15): 8932-8947.2613030610.1021/acs.est.5b01090BouwmeesterHHollmanPCPetersRJPotential health impact of environmentally released micro-and nanoplastics in the human food production chain: experiences from nanotoxicologyEnviron Sci Technol2015491589328947Search in Google Scholar

Online resource 4: Last accessed October 24th, 2018 (in German) https://derstandard.at/2000089947285/Frage-und-Antwort-Wie-Mikroplastik-in-den-Organismus-gelangtOnline resource 4: Last accessed October 24th2018in Germanhttps://derstandard.at/2000089947285/Frage-und-Antwort-Wie-Mikroplastik-in-den-Organismus-gelangtSearch in Google Scholar

Jia P, Xia H, Tang K, Zhou Y. Plasticizers derived from biomass resources: a short review. Polymers 2018; 10(12): 1303.10.3390/polym10121303JiaPXiaHTangKZhouYPlasticizers derived from biomass resources: a short reviewPolymers201810121303Open DOISearch in Google Scholar

Zhu Y, Romain C, Williams CK. Sustainable polymers from renewable resources. Nature 2016; 540(7633): 354.10.1038/nature2100127974763ZhuYRomainCWilliamsCKSustainable polymers from renewable resourcesNature20165407633354Open DOISearch in Google Scholar

Koller M, Maršálek L, Miranda de Sousa Dias M, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 2017; 37(A): 24-38.10.1016/j.nbt.2016.05.001KollerMMaršálekLMiranda de Sousa DiasMBrauneggGProducing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable mannerNew Biotechnol201737A2438Open DOISearch in Google Scholar

Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, Reis MAM. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017; 4(2): 55.10.3390/bioengineering4020055KourmentzaCPlácidoJVenetsaneasNBurniol-FigolsAVarroneCGavalaHNReisMAMRecent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) productionBioengineering20174255Open DOISearch in Google Scholar

Akiyama M, Tsuge T, Doi Y. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym Degrad Stab 2003; 80(1): 183-194.10.1016/S0141-3910(02)00400-7AkiyamaMTsugeTDoiYEnvironmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentationPolym Degrad Stab2003801183194Open DOISearch in Google Scholar

Narodoslawsky M, Shazad K, Kollmann R, Schnitzer H. LCA of PHA production–Identifying the ecological potential of bio-plastic. Chem Biochem Eng Q 2015; 29(2): 299-305.10.15255/CABEQ.2014.2262NarodoslawskyMShazadKKollmannRSchnitzerHLCA of PHA production–Identifying the ecological potential of bio-plasticChem Biochem Eng Q2015292299305Open DOISearch in Google Scholar

Nielsen C, Rahman A, Rehman AU, Walsh MK, Miller CD. Food waste conversion to microbial polyhydroxyalkanoates. Microb Biotechnol 2017; 10(6): 1338-1352.2873690110.1111/1751-7915.12776NielsenCRahmanARehmanAUWalshMKMillerCDFood waste conversion to microbial polyhydroxyalkanoatesMicrob Biotechnol201710613381352565861028736901Search in Google Scholar

Kwan TH, Hu Y, Lin CSK. Techno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) production. J Clean Prod 2018; 181: 72–87.10.1016/j.jclepro.2018.01.179KwanTHHuYLinCSKTechno-economic analysis of a food waste valorisation process for lactic acid, lactide and poly(lactic acid) productionJ Clean Prod20181817287Open DOISearch in Google Scholar

Koller M, Braunegg G. Advanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashion. The EuroBiotech Journal 2018; 2(2): 89-103.10.2478/ebtj-2018-0013KollerMBrauneggGAdvanced approaches to produce polyhydroxyalkanoate (PHA) biopolyesters in a sustainable and economic fashionThe EuroBiotech Journal20182289103Open DOISearch in Google Scholar

Carvalho G, Oehmen A, Albuquerque MG, Reis MAM. The relationship between mixed microbial culture composition and PHA production performance from fermented molasses. New Biotechnol 2014; 31(4): 257-263.10.1016/j.nbt.2013.08.010CarvalhoGOehmenAAlbuquerqueMGReisMAMThe relationship between mixed microbial culture composition and PHA production performance from fermented molassesNew Biotechnol201431425726324025669Open DOISearch in Google Scholar

Akaraonye E, Moreno C, Knowles JC, Keshavarz T, Roy I. Poly(3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source. Biotechnol J 2012; 7(2): 293-303.2214764210.1002/biot.201100122AkaraonyeEMorenoCKnowlesJCKeshavarzTRoyIPoly(3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon sourceBiotechnol J20127229330322147642Search in Google Scholar

Obruca S, Benesova P, Marsalek L, Marova I. Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 2015; 29(2): 135-144.10.15255/CABEQ.2014.2253ObrucaSBenesovaPMarsalekLMarovaIUse of lignocellulosic materials for PHA productionChem Biochem Eng Q2015292135144Open DOISearch in Google Scholar

Lopes MSG, Gomez JGC, Taciro MK, Mendonça TT, Silva LF. Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp. J Ind Microbiol Biotechnol 2014; 41(9): 1353-1363.2505963710.1007/s10295-014-1485-5LopesMSGGomezJGCTaciroMKMendonçaTTSilvaLFPolyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia spJ Ind Microbiol Biotechnol20144191353136325059637Search in Google Scholar

Cesário MT, Raposo RS, de Almeida MCM, van Keulen F, Ferreira BS, da Fonseca MMR. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnol 2014; 31(1): 104-113.10.1016/j.nbt.2013.10.004CesárioMTRaposoRSde AlmeidaMCMvan KeulenFFerreiraBSda FonsecaMMREnhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysatesNew Biotechnol201431110411324157713Open DOISearch in Google Scholar

Ahn J, Jho EH, Kim M, Nam K. Increased 3HV concentration in the bacterial production of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) copolymer with acid-digested rice straw waste. J Polym Environ 2016; 24(2): 98-103.10.1007/s10924-015-0749-0AhnJJhoEHKimMNamKIncreased 3HV concentration in the bacterial production of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) copolymer with acid-digested rice straw wasteJ Polym Environ201624298103Open DOISearch in Google Scholar

Bowers T, Vaidya A, Smith DA, Lloyd-Jones G. Softwood hydrolysate as a carbon source for polyhydroxyalkanoate production. J Chem Technol Biotechnol 2014; 89(7): 1030-1037.10.1002/jctb.4196BowersTVaidyaASmithDALloyd-JonesGSoftwood hydrolysate as a carbon source for polyhydroxyalkanoate productionJ Chem Technol Biotechnol201489710301037Open DOISearch in Google Scholar

Kucera D, Benesova P, Ladicky P, Pekar M, Sedlacek P, Obruca S. Production of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and lignite. Bioengineering 2017: 4(2): 53.10.3390/bioengineering4020053KuceraDBenesovaPLadickyPPekarMSedlacekPObrucaSProduction of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: Comparison of hydrolyzates detoxification by application of overliming, active carbon, and ligniteBioengineering20174253559045728952532Open DOISearch in Google Scholar

Davis R, Kataria R, Cerrone F, Woods T, Kenny S, O’Donovan A, et al. Conversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate mcl-PHA) production by Pseudomonas strains. Bioresource Technol 2013; 150: 202-209.10.1016/j.biortech.2013.10.001DavisRKatariaRCerroneFWoodsTKennySO’DonovanAet alConversion of grass biomass into fermentable sugars and its utilization for medium chain length polyhydroxyalkanoate mcl-PHA) production by Pseudomonas strainsBioresource Technol201315020220924177152Open DOISearch in Google Scholar

Kataria R, Woods T, Casey W, Cerrone F, Davis R, O’Connor K, et al. Surfactant-mediated hydrothermal pretreatment of Ryegrass followed by enzymatic saccharification for polyhydroxyalkanoate production. Ind Crop Prod 2018; 111: 625-632.10.1016/j.indcrop.2017.11.029KatariaRWoodsTCaseyWCerroneFDavisRO’ConnorKet alSurfactant-mediated hydrothermal pretreatment of Ryegrass followed by enzymatic saccharification for polyhydroxyalkanoate productionInd Crop Prod2018111625632Open DOISearch in Google Scholar

Zhang Y, Sun W, Wang H, Geng A. Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11. Bioresource Technol 2013; 147: 307-314.10.1016/j.biortech.2013.08.029ZhangYSunWWangHGengAPolyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11Bioresource Technol201314730731424001560Open DOISearch in Google Scholar

Sawant SS, Salunke BK, Kim BS. Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1. Bioresource Technol 2015, 194: 247-255.10.1016/j.biortech.2015.07.019SawantSSSalunkeBKKimBSDegradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus spLL1. Bioresource Technol201519424725526207871Open DOISearch in Google Scholar

Hokamura A, Yunoue Y, Goto S, Matsusaki H. Biosynthesis of polyhydroxyalkanoate from steamed soybean wastewater by a recombinant strain of Pseudomonas sp. 61-3. Bioengineering 2017; 4(3): 68.10.3390/bioengineering4030068HokamuraAYunoueYGotoSMatsusakiHBiosynthesis of polyhydroxyalkanoate from steamed soybean wastewater by a recombinant strain of Pseudomonas sp61-3. Bioengineering20174368561531428952548Open DOISearch in Google Scholar

Bhattacharya S, Dubey S, Singh P, Shrivastava A, Mishra S. Biodegradable polymeric substances produced by a marine bacterium from a surplus stream of the biodiesel industry. Bioengineering 2016; 3(4): 34.10.3390/bioengineering3040034BhattacharyaSDubeySSinghPShrivastavaAMishraSBiodegradable polymeric substances produced by a marine bacterium from a surplus stream of the biodiesel industryBioengineering20163434559727728952596Open DOISearch in Google Scholar

Hermann-Krauss C, Koller M, Muhr A, Fasl H, Stelzer F, Braunegg G. Archaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-products. Archaea 2013; 2013: article ID 129268.24453697Hermann-KraussCKollerMMuhrAFaslHStelzerFBrauneggGArchaeal production of polyhydroxyalkanoate (PHA) co-and terpolyesters from biodiesel industry-derived by-productsArchaea20132013article ID 12926810.1155/2013/129268388072524453697Search in Google Scholar

Takahashi RYU, Castilho NAS, Silva MACD, Miotto MC, Lima AODS. Prospecting for marine bacteria for polyhydroxyalkanoate production on low-cost substrates. Bioengineering 2017; 4(3): 60.10.3390/bioengineering4030060TakahashiRYUCastilhoNASSilvaMACDMiottoMCLimaAODSProspecting for marine bacteria for polyhydroxyalkanoate production on low-cost substratesBioengineering20174360561530628952539Open DOISearch in Google Scholar

Koller M, Marsalek L. Principles of glycerol-based polyhydroxyalkanoate production. Applied Food Biotechnology 2015; 2(4): 3-10.KollerMMarsalekLPrinciples of glycerol-based polyhydroxyalkanoate productionApplied Food Biotechnology201524310Search in Google Scholar

Koller M, Braunegg G. Biomediated production of structurally diverse poly(hydroxyalkanoates) from surplus streams of the animal processing industry. Polimery 2015; 60: 298-308.10.14314/polimery.2015.298KollerMBrauneggGBiomediated production of structurally diverse poly(hydroxyalkanoates) from surplus streams of the animal processing industryPolimery201560298308Open DOISearch in Google Scholar

Koller M, Shahzad K, Braunegg G. Waste Streams of the Animal-Processing Industry as Feedstocks to Produce Polyhydroxyalkanoate Biopolyesters. Applied Food Biotechnology 2018; 5(4): 193-203.KollerMShahzadKBrauneggGWaste Streams of the Animal-Processing Industry as Feedstocks to Produce Polyhydroxyalkanoate BiopolyestersApplied Food Biotechnology201854193203Search in Google Scholar

Neelamegam A, Al-Battashi H, Al-Bahry S, Nallusamy S. Biorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentation. J Biotechnol 2018; 265: 25-30.10.1016/j.jbiotec.2017.11.00229113820NeelamegamAAl-BattashiHAl-BahrySNallusamySBiorefinery production of poly-3-hydroxybutyrate using waste office paper hydrolysate as feedstock for microbial fermentationJ Biotechnol2018265253029113820Open DOISearch in Google Scholar

Weissgram M, Gstöttner J, Lorantfy B, Tenhaken R, Herwig C, Weber HK. Generation of PHB from spent sulfite liquor using halophilic microorganisms. Microorganisms 2015; 3(2): 268-289.2768208910.3390/microorganisms3020268WeissgramMGstöttnerJLorantfyBTenhakenRHerwigCWeberHKGeneration of PHB from spent sulfite liquor using halophilic microorganismsMicroorganisms201532268289502323427682089Search in Google Scholar

Obruca S, Benesova P, Kucera D, Petrik S, Marova I. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnol 2015; 32(6): 569-574.10.1016/j.nbt.2015.02.008ObrucaSBenesovaPKuceraDPetrikSMarovaIBiotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoidsNew Biotechnol201532656957425721970Open DOISearch in Google Scholar

Kourmentza C, Costa J, Azevedo Z, Servin C, Grandfils C, De Freitas V, Reis MAM. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. Bioresource Technol 2018; 247: 829-837.10.1016/j.biortech.2017.09.138KourmentzaCCostaJAzevedoZServinCGrandfilsCDe FreitasVReisMAMBurkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipidsBioresource Technol201824782983730060419Open DOISearch in Google Scholar

Johnston B, Jiang G, Hill D, Adamus G, Kwiecień I, Zięba M, et al The molecular level characterization of biodegradable polymers originated from polyethylene using non-oxygenated polyethylene wax as a carbon source for polyhydroxyalkanoate production. Bioengineering 2017; 4(3): 73.10.3390/bioengineering4030073JohnstonBJiangGHillDAdamusGKwiecieńIZiębaMet alThe molecular level characterization of biodegradable polymers originated from polyethylene using non-oxygenated polyethylene wax as a carbon source for polyhydroxyalkanoate productionBioengineering20174373561531928952552Open DOISearch in Google Scholar

Koller M, Sandholzer D, Salerno A, Braunegg G, Narodoslawsky M. Biopolymer from industrial residues: Life cycle assessment of poly (hydroxyalkanoates) from whey. Res Cons Recyc 2013; 73: 64-71.10.1016/j.resconrec.2013.01.017KollerMSandholzerDSalernoABrauneggGNarodoslawskyMBiopolymer from industrial residues: Life cycle assessment of poly (hydroxyalkanoates) from wheyRes Cons Recyc2013736471Open DOISearch in Google Scholar

Koller M, Puppi D, Chiellini F, Braunegg G. Comparing chemical and enzymatic Hydrolysis of whey lactose to generate feedstocks for haloarchaeal poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis. Int J Pharm Sci Res 2016; 3(1).KollerMPuppiDChielliniFBrauneggGComparing chemical and enzymatic Hydrolysis of whey lactose to generate feedstocks for haloarchaeal poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesisInt J Pharm Sci Res20163110.15344/2394-1502/2016/112Search in Google Scholar

Kovalcik A, Kucera D, Matouskova P, Pernicova I, Obruca S, Kalina M, et al. Influence of removal of microbial inhibitors on PHA production from spent coffee grounds employing Halomonas halophila J Environ Chem Eng 2018; 6(2): 3495-3501.10.1016/j.jece.2018.05.028KovalcikAKuceraDMatouskovaPPernicovaIObrucaSKalinaMet alInfluence of removal of microbial inhibitors on PHA production from spent coffee grounds employing Halomonas halophilaJ Environ Chem Eng20186234953501Open DOISearch in Google Scholar

Keskin G, Kızıl G, Bechelany M, Pochat-Bohatier C, Öner M. Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl. Chem. 2017; 89 (12): 1841-184810.1515/pac-2017-0401KeskinGKızılGBechelanyMPochat-BohatierCÖnerMPotential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materialsPure Appl. Chem2017891218411848Open DOISearch in Google Scholar

Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polym Lett 2014; 8(11): 791-808.10.3144/expresspolymlett.2014.82BugnicourtECinelliPLazzeriAAlvarezVAPolyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packagingeXPRESS Polym Lett2014811791808Open DOISearch in Google Scholar

Mallegni N, Cinelli P, Balestri E, Lazzeri A, Seggiani M. New eco-composites based on polyhydroxyalkanoates (PHA) for marine applications. J Adv Chem Eng 2016; 6(3): 70-70.MallegniNCinelliPBalestriELazzeriASeggianiMNew eco-composites based on polyhydroxyalkanoates (PHA) for marine applicationsJ Adv Chem Eng2016637070Search in Google Scholar

Lenz RW, Marchessault RH. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 2005; 6: 1-8.1563849510.1021/bm049700cLenzRWMarchessaultRHBacterial polyesters: biosynthesis, biodegradable plastics and biotechnologyBiomacromolecules2005618Search in Google Scholar

Braunegg G. Lefebvre G, Genser KF. Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J. Biotechnol 1998; 65: 127-161.10.1016/S0168-1656(98)00126-69828458BrauneggGLefebvreGGenserKFPolyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspectsJ. Biotechnol199865127161Open DOISearch in Google Scholar

Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol Adv 2018; 36(3): 856-870.2924868410.1016/j.biotechadv.2017.12.006ObrucaSSedlacekPKollerMKuceraDPernicovaIInvolvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applicationsBiotechnol Adv201836385687029248684Search in Google Scholar

Obruca S, Sedlacek P, Mravec F, Samek O, Marova I. Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly (3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 2016; 100(3): 1365-1376.10.1007/s00253-015-7162-426590589ObrucaSSedlacekPMravecFSamekOMarovaIEvaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly (3-hydroxybutyrate) accumulating cellsAppl Microbiol Biotechnol201610031365137626590589Open DOISearch in Google Scholar

Slaninova E, Sedlacek P, Mravec F, Mullerova L, Samek O, Koller M, et al., Light scattering on PHA granules protects bacterial cells against the harmful effects of UV radiation. Appl. Microbiol Biotechnol 2018; 102: 1923.2934949410.1007/s00253-018-8760-8SlaninovaESedlacekPMravecFMullerovaLSamekOKollerMet alLight scattering on PHA granules protects bacterial cells against the harmful effects of UV radiationAppl. Microbiol Biotechnol2018102192329349494Search in Google Scholar

Obruca S, Sedlacek P, Krzyzanek V, Mravec F, Hrubanova K, Samek O, et al Accumulation of poly (3-hydroxybutyrate) helps bacterial cells to survive freezing. PloS one 2016; 11(6): e0157778.2731528510.1371/journal.pone.0157778ObrucaSSedlacekPKrzyzanekVMravecFHrubanovaKSamekOet alAccumulation of poly (3-hydroxybutyrate) helps bacterial cells to survive freezingPloS one2016116e0157778491208627315285Search in Google Scholar

Sedlacek P, Slaninova E, Koller M, Nebesarova J, Marova I, Krzyzanek V, Obruca S. PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnol 2019; 49(25): 129-136.10.1016/j.nbt.2018.10.005SedlacekPSlaninovaEKollerMNebesarovaJMarovaIKrzyzanekVObrucaSPHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalancesNew Biotechnol2019492512913630389520Open DOISearch in Google Scholar

Obruca S, Marova I, Stankova M, Mravcova L, Svoboda Z. Effect of ethanol and hydrogen peroxide on poly (3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16. World J Microbiol Biotechnol 2010; 26(7): 1261-1267.10.1007/s11274-009-0296-824026931ObrucaSMarovaIStankovaMMravcovaLSvobodaZEffect of ethanol and hydrogen peroxide on poly (3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16World J Microbiol Biotechnol20102671261126724026931Open DOISearch in Google Scholar

Al Rowaihi IS, Paillier A, Rasul S, Karan R, Grötzinger SW, Takanabe K, Eppinger J. Poly(3-hydroxybutyrate) production in an integrated electromicrobial setup: Investigation under stress-inducing conditions. PloS one 2018; 13(4), e0196079.10.1371/journal.pone.0196079Al RowaihiISPaillierARasulSKaranRGrötzingerSWTakanabeKEppingerJPoly(3-hydroxybutyrate) production in an integrated electromicrobial setup: Investigation under stress-inducing conditionsPloS one2018134e0196079591940229698424Open DOISearch in Google Scholar

González-García Y, Nungaray J, Córdova J, González-Reynoso O, Koller M, Atlić A, Braunegg G. Biosynthesis and characterization of polyhydroxyalkanoates in the polysaccharide-degrading marine bacterium Saccharophagus degradans ATCC 43961. J Ind Microbiol Biotechnol 2008; 35(6): 629-633.1819346610.1007/s10295-007-0299-0González-GarcíaYNungarayJCórdovaJGonzález-ReynosoOKollerMAtlićABrauneggGBiosynthesis and characterization of polyhydroxyalkanoates in the polysaccharide-degrading marine bacterium Saccharophagus degradans ATCC 43961J Ind Microbiol Biotechnol200835662963318193466Search in Google Scholar

Montenegro EMDS, Delabary GS, Silva MACD, Andreote FD, Lima AODS. Molecular diagnostic for prospecting polyhydroxyalkanoate-producing bacteria. Bioengineering 2017; 4(2): 52.10.3390/bioengineering4020052MontenegroEMDSDelabaryGSSilvaMACDAndreoteFDLimaAODSMolecular diagnostic for prospecting polyhydroxyalkanoate-producing bacteriaBioengineering20174252559047228952531Open DOISearch in Google Scholar

Salgaonkar BB, Bragança JM. Utilization of sugarcane bagasse by Halogeometricum borinquense strain E3 for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioengineering 2017; 4(2): 50.10.3390/bioengineering4020050SalgaonkarBBBragançaJMUtilization of sugarcane bagasse by Halogeometricum borinquense strain E3 for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)Bioengineering20174250559045628952529Open DOISearch in Google Scholar

Yin J, Chen JC, Wu Q, Chen GQ. Halophiles, coming stars for industrial biotechnology. Biotechnology Adv 2015; 33(7): 1433-1442.10.1016/j.biotechadv.2014.10.008YinJChenJCWuQChenGQHalophiles, coming stars for industrial biotechnologyBiotechnology Adv20153371433144225447783Open DOISearch in Google Scholar

Chen GQ, Jiang XR. Next generation industrial biotechnology based on extremophilic bacteria. Curr Opin Biotech 2018; 50: 94-100.10.1016/j.copbio.2017.11.016ChenGQJiangXRNext generation industrial biotechnology based on extremophilic bacteriaCurr Opin Biotech2018509410029223022Open DOISearch in Google Scholar

Chen GQ, Jiang XR. Engineering microorganisms for improving polyhydroxyalkanoate biosynthesis. Curr Opin Biotech 2018; 53: 20-25.10.1016/j.copbio.2017.10.008ChenGQJiangXREngineering microorganisms for improving polyhydroxyalkanoate biosynthesisCurr Opin Biotech201853202529169056Open DOISearch in Google Scholar

Povolo S, Toffano P, Basaglia M, Casella, S. Polyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactose. Bioresource Technol 2010; 101(20): 7902-7907.10.1016/j.biortech.2010.05.029PovoloSToffanoPBasagliaMCasellaSPolyhydroxyalkanoates production by engineered Cupriavidus necator from waste material containing lactoseBioresource Technol2010101207902790720537531Open DOISearch in Google Scholar

Ouyang P, Wang H, Hajnal I, Wu Q, Guo Y, Chen GQ. Increasing oxygen availability for improving poly(3-hydroxybutyrate) production by Halomonas Metab Eng 2018; 45: 20-31.10.1016/j.ymben.2017.11.00629155061OuyangPWangHHajnalIWuQGuoYChenGQIncreasing oxygen availability for improving poly(3-hydroxybutyrate) production by HalomonasMetab Eng201845203129155061Open DOISearch in Google Scholar

Ling C, Qiao GQ, Shuai BW, Olavarria K, Yin J, Xiang RJ, et al. Engineering NADH/NAD+ ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA). Metab Eng 2018; 49: 275-286.10.1016/j.ymben.2018.09.00730219528LingCQiaoGQShuaiBWOlavarriaKYinJXiangRJet alEngineering NADH/NAD+ ratio in Halomonas bluephagenesis for enhanced production of polyhydroxyalkanoates (PHA)Metab Eng20184927528630219528Open DOISearch in Google Scholar

Qin Q, Ling C, Zhao Y, Yang T, Yin J, Guo Y, Chen GQ. CRISPR/Cas9 editing genome of extremophile Halomonas spp. Metab Eng 2018; 47: 219-229.10.1016/j.ymben.2018.03.01829609045QinQLingCZhaoYYangTYinJGuoYChenGQCRISPR/Cas9 editing genome of extremophile Halomonas sppMetab Eng20184721922929609045Open DOISearch in Google Scholar

Liu Q, Luo G, Zhou XR, Chen GQ. Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida Metab Eng 2011; 13(1): 11-17.2097120610.1016/j.ymben.2010.10.004LiuQLuoGZhouXRChenGQBiosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putidaMetab Eng20111311117Search in Google Scholar

Shen R, Cai L, Meng D, Wu L, Guo K, Dong G, et al. Benzene containing polyhydroxyalkanoates homo-and copolymers synthesized by genome edited Pseudomonas entomophila Science China Life Sciences 2014; 57(1), 4-10.2436935610.1007/s11427-013-4596-8ShenRCaiLMengDWuLGuoKDongGet alBenzene containing polyhydroxyalkanoates homo-and copolymers synthesized by genome edited Pseudomonas entomophilaScience China Life Sciences2014571410Search in Google Scholar

Wei X, Liu F, Jian J, Wang R, Chen GQ. Production of Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) by Recombinant Pseudomonas stutzeri 1317 from Unrelated Carbon Sources. Chinese J Chem Eng 2013; 21(9): 1057-1061.10.1016/S1004-9541(13)60549-2WeiXLiuFJianJWangRChenGQProduction of Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) by Recombinant Pseudomonas stutzeri 1317 from Unrelated Carbon SourcesChinese J Chem Eng201321910571061Open DOISearch in Google Scholar

Zhou XY, Yuan XX, Shi ZY, Meng DC, Jiang WJ, Wu LP., et al. Hyperproduction of poly (4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb Cell Fact 2012; 11(1): 54.2255095910.1186/1475-2859-11-54ZhouXYYuanXXShiZYMengDCJiangWJWuLP.et alHyperproduction of poly (4-hydroxybutyrate) from glucose by recombinant Escherichia coliMicrob Cell Fact201211154352730522550959Search in Google Scholar

Gamero JER, Favaro L, Pizzocchero V, Lomolino G, Basaglia M, Casella S. Nuclease expression in efficient polyhydroxyalkanoates-producing bacteria could yield cost reduction during downstream processing. Bioresource Technol 2018; 261: 176-181.10.1016/j.biortech.2018.04.021GameroJERFavaroLPizzoccheroVLomolinoGBasagliaMCasellaSNuclease expression in efficient polyhydroxyalkanoates-producing bacteria could yield cost reduction during downstream processingBioresource Technol201826117618129660658Open DOISearch in Google Scholar

Favaro L, Basaglia M, Casella S. Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review. Biofuel Bioprod Bior 2018; online ahead of press; doi: 10.1002/bbbFavaroLBasagliaMCasellaSImproving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a reviewBiofuel Bioprod Bior2018online ahead of press10.1002/bbbOpen DOISearch in Google Scholar

Koller M, Bona R, Chiellini E, Fernandes EG, Horvat P, Kutscher C., et al Polyhydroxyalkanoate production from whey by Pseudomonas hydrogenovora Biores Technol 2008; 99(11): 4854-4863.10.1016/j.biortech.2007.09.049KollerMBonaRChielliniEFernandesEGHorvatPKutscherC.et alPolyhydroxyalkanoate production from whey by Pseudomonas hydrogenovoraBiores Technol200899114854486318053709Open DOISearch in Google Scholar

Blunt W, Levin D, Cicek N. Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity. Polymers 2018; 10(11): 1197.10.3390/polym10111197BluntWLevinDCicekNBioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) ProductivityPolymers201810111197629063930961122Open DOISearch in Google Scholar

Koller M. A review on established and emerging fermentation schemes for microbial production of Polyhydroxyalkanoate (PHA) biopolyesters. Fermentation 2018: 4(2), 30.10.3390/fermentation4020030KollerMA review on established and emerging fermentation schemes for microbial production of Polyhydroxyalkanoate (PHA) biopolyestersFermentation20184230Open DOISearch in Google Scholar

Braunegg G, Lefebvre G, Renner G, Zeiser A, Haage G, Loidl-Lanthaler K. Kinetics as a tool for polyhydroxyalkanoate production optimization. Can J Microbiol 1995; 41(13): 239-248.10.1139/m95-192BrauneggGLefebvreGRennerGZeiserAHaageGLoidl-LanthalerKKinetics as a tool for polyhydroxyalkanoate production optimizationCan J Microbiol19954113239248Open DOISearch in Google Scholar

Sindhu R, Silviya N, Binod P, Pandey A. Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J 2013; 78: 67-72.10.1016/j.bej.2012.12.015SindhuRSilviyaNBinodPPandeyAPentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrateBiochem Eng J2013786772Open DOISearch in Google Scholar

Gahlawat G, Srivastava AK. Enhancing the production of polyhydroxyalkanoate biopolymer by Azohydromonas australica using a simple empty and fill bioreactor cultivation strategy. Chem Biochem Eng Q 2018; 31(4): 479-485.10.15255/CABEQ.2017.1148GahlawatGSrivastavaAKEnhancing the production of polyhydroxyalkanoate biopolymer by Azohydromonas australica using a simple empty and fill bioreactor cultivation strategyChem Biochem Eng Q2018314479485Open DOISearch in Google Scholar

Miranda de Sousa Dias M, Koller M, Puppi D, Morelli A, Chiellini F, Braunegg G. Fed-Batch synthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from sucrose and 4-hydroxybutyrate precursors by Burkholderia sacchari strain DSM 17165. Bioengineering 2017; 4: 3610.3390/bioengineering4020036Miranda de Sousa DiasMKollerMPuppiDMorelliAChielliniFBrauneggGFed-Batch synthesis of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from sucrose and 4-hydroxybutyrate precursors by Burkholderia sacchari strain DSM 17165Bioengineering2017436559045528952515Open DOISearch in Google Scholar

Ibrahim M.H, Steinbüchel A. High-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl Environ Microbiol 2010; 76: 7890-7895.10.1128/AEM.01488-1020889784IbrahimM.HSteinbüchelAHigh-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10Appl Environ Microbiol20107678907895298860220889784Open DOISearch in Google Scholar

Haas C, El-Najjar T, Virgolini N, Smerilli M, Neureiter M. High cell-density production of poly(3-hydroxybutyrate) in a membrane bioreactor. New Biotechnol 2017; 37: 117-122.10.1016/j.nbt.2016.06.1461HaasCEl-NajjarTVirgoliniNSmerilliMNeureiterMHigh cell-density production of poly(3-hydroxybutyrate) in a membrane bioreactorNew Biotechnol20173711712227373779Open DOISearch in Google Scholar

Koller M, Muhr A. Continuous production mode as a viable process-engineering tool for efficient poly(hydroxyalkanoate)(PHA) bio-production. Chem Biochem Eng Q 2014; 28(1): 65-77.KollerMMuhrAContinuous production mode as a viable process-engineering tool for efficient poly(hydroxyalkanoate)(PHA) bio-productionChem Biochem Eng Q20142816577Search in Google Scholar

Koller M, Braunegg G. Potential and prospects of continuous polyhydroxyalkanoate (PHA) production. Bioengineering 2015; 2(2): 94-121.10.3390/bioengineering202009428955015KollerMBrauneggGPotential and prospects of continuous polyhydroxyalkanoate (PHA) productionBioengineering20152294121559719528955015Open DOISearch in Google Scholar

Atlić A, Koller M, Scherzer D, Kutschera C, Grillo-Fernandes E, Horvat P, et al. Continuous production of polyR-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 2011; 91(2): 295-304.10.1007/s00253-011-3260-0AtlićAKollerMScherzerDKutscheraCGrillo-FernandesEHorvatPet alContinuous production of polyR-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascadeAppl Microbiol Biotechnol201191229530421503760Open DOISearch in Google Scholar

Horvat P, Špoljarić IV, Lopar M, Atlić A, Koller M, Braunegg G. Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly[-R-3-hydroxybutyrate] by Cupriavidus necator Bioproc Biosyst Eng 2013; 36(9): 1235-1250.10.1007/s00449-012-0852-8HorvatPŠpoljarićIVLoparMAtlićAKollerMBrauneggGMathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly[-R-3-hydroxybutyrate] by Cupriavidus necatorBioproc Biosyst Eng20133691235125023135491Open DOISearch in Google Scholar

Lopar M, Špoljarić IV, Atlić A, Koller M, Braunegg G, Horvat P. Five-step continuous production of PHB analyzed by elementary flux, modes, yield space analysis and high structured metabolic model. Biochem Eng J 2013; 79: 57-70.10.1016/j.bej.2013.07.003LoparMŠpoljarićIVAtlićAKollerMBrauneggGHorvatPFive-step continuous production of PHB analyzed by elementary flux, modes, yield space analysis and high structured metabolic modelBiochem Eng J2013795770Open DOISearch in Google Scholar

Vadlja D, Koller M, Novak M, Braunegg G, Horvat P. Footprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade process. Appl Microbiol Biotechnol 2016; 100(23): 10065-10080.10.1007/s00253-016-7844-6VadljaDKollerMNovakMBrauneggGHorvatPFootprint area analysis of binary imaged Cupriavidus necator cells to study PHB production at balanced, transient, and limited growth conditions in a cascade processAppl Microbiol Biotechnol2016100231006510080510298427695913Open DOISearch in Google Scholar

Koller M, Vadlja D, Braunegg G, Atlić A, Horvat P. Formal-and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: Tools to understand and optimize multistage-continuous PHA biosynthesis. The EuroBiotech Journal 2017; 1(3): 203-211.10.24190/ISSN2564-615X/2017/03.01KollerMVadljaDBrauneggGAtlićAHorvatPFormal-and high-structured kinetic process modelling and footprint area analysis of binary imaged cells: Tools to understand and optimize multistage-continuous PHA biosynthesisThe EuroBiotech Journal201713203211Open DOISearch in Google Scholar

Koller M; Maršálek L: Cyanobacterial polyhydroxyalkanoate production: status quo and quo vadis? Curr Biotechnol 2015; 4(4): 464-480.KollerMMaršálekLCyanobacterial polyhydroxyalkanoate production: status quo and quo vadis?Curr Biotechnol20154446448010.2174/2211550104666150917010849Search in Google Scholar

Drosg B, Fritz I, Gattermayr F, Silvestrini L. Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria. Chem Biochem Engineering Q 2015; 29(2): 145-156.10.15255/CABEQ.2014.2254DrosgBFritzIGattermayrFSilvestriniLPhoto-autotrophic production of poly(hydroxyalkanoates) in cyanobacteriaChem Biochem Engineering Q2015292145156Open DOISearch in Google Scholar

Costa JAV, Moreira JB, Lucas BF, Braga VDS, Cassuriaga APA, Morais MGD. Recent Advances and Future Perspectives of PHB Production by Cyanobacteria. Industrial Biotechnol 2018; 14(5): 249-256.10.1089/ind.2018.0017CostaJAVMoreiraJBLucasBFBragaVDSCassuriagaAPAMoraisMGDRecent Advances and Future Perspectives of PHB Production by CyanobacteriaIndustrial Biotechnol2018145249256Open DOISearch in Google Scholar

Koller M Khosravi-Darani K, Braunegg G. Advanced Photobioreactor Systems for the Efficient Cultivation of Cyanobacteria. In: Yiu Fai Tsang (Ed.): PhotobioreactorsAdnacements, Applications and Research. New York. Nova Science Publishers, 2017, pp. 35-90.KollerMKhosravi-DaraniKBrauneggGAdvanced Photobioreactor Systems for the Efficient Cultivation of CyanobacteriaTsangYiu FaiPhotobioreactorsAdnacements, Applications and ResearchNew YorkNova Science Publishers20173590Search in Google Scholar

Troschl C, Meixner K, Drosg B. Cyanobacterial PHA production—Review of recent advances and a summary of three years’ working experience running a pilot plant. Bioengineering 2017: 4(2): 26.10.3390/bioengineering4020026TroschlCMeixnerKDrosgBCyanobacterial PHA production—Review of recent advances and a summary of three years’ working experience running a pilot plantBioengineering20174226559047028952505Open DOISearch in Google Scholar

Tanaka K, Miyawaki K, Yamaguchi A, Khosravi-Darani K, Matsusaki H. Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1, Appl Microbiol Biotechnol 2011; 92(6): 1161-1169.10.1007/s00253-011-3420-2TanakaKMiyawakiKYamaguchiAKhosravi-DaraniKMatsusakiHCell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella spO-1, Appl Microbiol Biotechnol20119261161116921695533Open DOISearch in Google Scholar

Khosravi-Darani K, Vasheghani-Farahani E, Tanaka K. Hydrogen-oxidizing bacteria as poly(hydroxybutyrate) producers. Iran J Biotechnol 2006; 4: 193-196.Khosravi-DaraniKVasheghani-FarahaniETanakaKHydrogen-oxidizing bacteria as poly(hydroxybutyrate) producersIran J Biotechnol20064193196Search in Google Scholar

Khosravi-Darani K, Mokhtari ZB, Amai T, Tanaka K. Microbial production of poly(hydroxybutyrate) from C1 carbon sources. Appl Microb Biotechnol 2013; 97(12): 56-57.Khosravi-DaraniKMokhtariZBAmaiTTanakaKMicrobial production of poly(hydroxybutyrate) from C1 carbon sourcesAppl Microb Biotechnol20139712565710.1007/s00253-013-4807-zSearch in Google Scholar

Mokhtari-Hosseini ZB, Vasheghani-Farahani E, Heidarzadeh-Vazifekhoran A, Shojaosadati SA, Karimzadeh R, Khosravi-Darani K. Statistical media optimization for growth and PHB production from methanol by a methylotrophic bacterium. Bioresour Technol 2009; 100: 2436-2443.10.1016/j.biortech.2008.11.02419121581Mokhtari-HosseiniZBVasheghani-FarahaniEHeidarzadeh-VazifekhoranAShojaosadatiSAKarimzadehRKhosravi-DaraniKStatistical media optimization for growth and PHB production from methanol by a methylotrophic bacteriumBioresour Technol20091002436244319121581Open DOISearch in Google Scholar

Mokhtari-Hosseini ZB, Vasheghani-Farahani E, Shojaosadati SA, Karimzadeh R, Heidarzadeh-Vazifekhoran A. Effect of feed composition on PHB production from methanol by HCDC Methylobacterium extorquens (DSMZ 1340). J Chem Technol Biotechnol 2009; 84: 1136-1139.10.1002/jctb.2145Mokhtari-HosseiniZBVasheghani-FarahaniEShojaosadatiSAKarimzadehRHeidarzadeh-VazifekhoranAEffect of feed composition on PHB production from methanol by HCDC Methylobacterium extorquens (DSMZ 1340)J Chem Technol Biotechnol20098411361139Open DOISearch in Google Scholar

Strong P, Laycock B, Mahamud S, Jensen P, Lant P, Tyson G, Pratt S. The opportunity for high-performance biomaterials from methane. Microorganisms 2016; 4(1): 11.10.3390/microorganisms4010011StrongPLaycockBMahamudSJensenPLantPTysonGPrattSThe opportunity for high-performance biomaterials from methaneMicroorganisms20164111502951627681905Open DOISearch in Google Scholar

Revelles O, Tarazona N, García JL, Prieto MA. Carbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrum Environ Microbiol 2016; 18(2): 708-720.10.1111/1462-2920.1308726472698RevellesOTarazonaNGarcíaJLPrietoMACarbon roadmap from syngas to polyhydroxyalkanoates in Rhodospirillum rubrumEnviron Microbiol201618270872026472698Open DOISearch in Google Scholar

Heinrich D, Raberg M, Fricke P, Kenny ST, Morales-Gamez L, Babu RP, et al. Syngas-derived medium-chain-length PHA synthesis in engineered Rhodospirillum rubrum Appl Environ Microbiol 2016; 82(20); 6132-6149 (AEM-01744).2752081210.1128/AEM.01744-16HeinrichDRabergMFrickePKennySTMorales-GamezLBabuRPet alSyngas-derived medium-chain-length PHA synthesis in engineered Rhodospirillum rubrumAppl Environ Microbiol2016822061326149AEM-01744506816927520812Search in Google Scholar

Khosravi-Darani K, Yazdian F, Rashedi H, Mofradnia SR, Moradi M, Madadian-Bozorg N, Koller M. Simulation of bioreactors for poly(3-hydroxybutyrate) production from natural gas. Iran J Chem Chem Eng 2019; 39(1) (online ahead of print).Khosravi-DaraniKYazdianFRashediHMofradniaSRMoradiMMadadian-BozorgNKollerMSimulation of bioreactors for poly(3-hydroxybutyrate) production from natural gasIran J Chem Chem Eng2019391online ahead of printSearch in Google Scholar

Karmann S, Follonier S, Egger D, Hebel D, Panke S, Zinn M. Tailor-made PAT platform for safe syngas fermentations in batch, fed-batch and chemostat mode with Rhodospirillum rubrum Microb Biotechnol 2017; 10(6): 1365-1375.10.1111/1751-7915.1272728585362KarmannSFollonierSEggerDHebelDPankeSZinnMTailor-made PAT platform for safe syngas fermentations in batch, fed-batch and chemostat mode with Rhodospirillum rubrumMicrob Biotechnol201710613651375565862728585362Open DOISearch in Google Scholar

Kosseva MR, Rusbandi E. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Int J Biol Macromolecul 2018; 107(A): 762-77810.1016/j.ijbiomac.2017.09.054KossevaMRRusbandiETrends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processingInt J Biol Macromolecul2018107A76277828928063Open DOISearch in Google Scholar

Koller M, Niebelschütz H, Braunegg G. Strategies for recovery and purification of polyR-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomass. Eng Life Sci 2013; 13(6): 549-562.10.1002/elsc.201300021KollerMNiebelschützHBrauneggGStrategies for recovery and purification of polyR-3-hydroxyalkanoates] (PHA) biopolyesters from surrounding biomassEng Life Sci2013136549562Open DOISearch in Google Scholar

Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A. PHA recovery from biomass. Biomacromolecules 2013; 14(9): 2963-2972.10.1021/bm401024423875914MadkourMHHeinrichDAlghamdiMAShabbajIISteinbüchelAPHA recovery from biomassBiomacromolecules20131492963297223875914Open DOISearch in Google Scholar

Marudkla J, Patjawit A, Chuensangjun C, Sirisansaneeyakul S. Optimization of poly (3-hydroxybutyrate) extraction from Cupriavidus necator DSM 545 using sodium dodecyl sulfate and sodium hypochlorite. Agric Natural Res 2018; 52(3): 266-273MarudklaJPatjawitAChuensangjunCSirisansaneeyakulSOptimization of poly (3-hydroxybutyrate) extraction from Cupriavidus necator DSM 545 using sodium dodecyl sulfate and sodium hypochloriteAgric Natural Res201852326627310.1016/j.anres.2018.09.009Search in Google Scholar

Samorì C, Basaglia M, Casella S, Favaro L, Galletti P, Giorgini L, et al. Dimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomass. Green Chem 2015; 17(2): 1047-1056.10.1039/C4GC01821DSamorìCBasagliaMCasellaSFavaroLGallettiPGiorginiLet alDimethyl carbonate and switchable anionic surfactants: two effective tools for the extraction of polyhydroxyalkanoates from microbial biomassGreen Chem201517210471056Open DOISearch in Google Scholar

Jiang G, Johnston B, Townrow D, Radecka I, Koller M, Chaber P, et al. Biomass Extraction Using Non-Chlorinated Solvents for Biocompatibility Improvement of Polyhydroxyalkanoates. Polymers 2018; 10(7): 731.10.3390/polym10070731JiangGJohnstonBTownrowDRadeckaIKollerMChaberPet alBiomass Extraction Using Non-Chlorinated Solvents for Biocompatibility Improvement of PolyhydroxyalkanoatesPolymers2018107731640353330960656Open DOISearch in Google Scholar

Koller M, Bona R, Chiellini E, Braunegg G. Extraction of short-chain-length poly-R-hydroxyalkanoates] scl-PHA) by the “anti-solvent” acetone under elevated temperature and pressure. Biotechnol Lett 2013; 35(7): 1023-1028.10.1007/s10529-013-1185-723525946KollerMBonaRChielliniEBrauneggGExtraction of short-chain-length poly-R-hydroxyalkanoates] scl-PHA) by the “anti-solvent” acetone under elevated temperature and pressureBiotechnol Lett20133571023102823525946Open DOISearch in Google Scholar

Ong SY, Zainab-L I, Pyary S, Sudesh K. A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Appl Microbiol Biotechnol 2018; 122(5): 2117–2127.OngSYZainab-LIPyarySSudeshKA novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animalsAppl Microbiol Biotechnol201812252117212710.1007/s00253-018-8788-9Search in Google Scholar

Chen GQ, Wang Y. Medical applications of biopolyesters polyhydroxyalkanoates. Chinese J Polym Sci 2013; 31(5): 719-736.10.1007/s10118-013-1280-1ChenGQWangYMedical applications of biopolyesters polyhydroxyalkanoatesChinese J Polym Sci2013315719736Open DOISearch in Google Scholar

Koller M. Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules 2018; 23(2): 362.10.3390/molecules23020362KollerMBiodegradable and biocompatible polyhydroxy-alkanoates (PHA): Auspicious microbial macromolecules for pharmaceutical and therapeutic applicationsMolecules2018232362Open DOISearch in Google Scholar

Peptu C, Kowalczuk M. Biomass-derived polyhydroxyalkanoates: Biomedical applications. In: Popa V, Volf I (Eds.), Biomass as renewable raw material to obtain bioproducts of high-tech value. Elsevier, 2018; pp. 271-313.PeptuCKowalczukMBiomass-derived polyhydroxyalkanoates: Biomedical applicationsPopaVVolfIBiomass as renewable raw material to obtain bioproducts of high-tech valueElsevier201827131310.1016/B978-0-444-63774-1.00008-9Search in Google Scholar

Butt FI, Muhammad N, Hamid A, Moniruzzaman M, Sharif F. Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications–Review. Int J Biol Macromol 2018; 120(A): 1294-1305.10.1016/j.ijbiomac.2018.09.00230189278ButtFIMuhammadNHamidAMoniruzzamanMSharifFRecent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications–ReviewInt J Biol Macromol2018120A12941305Open DOISearch in Google Scholar

Zinn M, Witholt B, Egli T. Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliver Rev 2001; 53(1): 5-21.10.1016/S0169-409X(01)00218-6ZinnMWitholtBEgliTOccurrence, synthesis and medical application of bacterial polyhydroxyalkanoateAdv Drug Deliver Rev2001531521Open DOISearch in Google Scholar

Luef KP, Stelzer F, Wiesbrock F. Poly(hydroxyalkanoate)s in medical applications. Chem Biochem Eng Q 2015; 29(2): 287-297.10.15255/CABEQ.2014.2261LuefKPStelzerFWiesbrockFPoly(hydroxyalkanoate)s in medical applicationsChem Biochem Eng Q2015292287297532160128239227Open DOISearch in Google Scholar

Valappil SP, Boccaccini AR, Bucke C, Roy I. Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces Antonie van Leeuwenhoek 2007; 91(1): 1-17.17016742ValappilSPBoccacciniARBuckeCRoyIPolyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and StreptomycesAntonie van Leeuwenhoek200791111710.1007/s10482-006-9095-517016742Search in Google Scholar

Peng Q, Zhang ZR, Gong T, Chen GQ, Sun X. A rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticles. Biomaterials 2012; 33(5): 1583-1588.2211276010.1016/j.biomaterials.2011.10.072PengQZhangZRGongTChenGQSunXA rapid-acting, long-acting insulin formulation based on a phospholipid complex loaded PHBHHx nanoparticlesBiomaterials20123351583158822112760Search in Google Scholar

Luo Z, Jiang L, Ding C, Hu B, Loh XJ, Li Z, Wu YL. Surfactant free delivery of docetaxel by polyR -3-hydroxybutyrate-R-3-hydroxyhexanoate]-based polymeric micelles for effective melanoma treatments. Adv Healthc Mater 2018; 1801221 (online ahead of print; doi: 10.1002/adhm.201801221).LuoZJiangLDingCHuBLohXJLiZWuYLSurfactant free delivery of docetaxel by polyR -3-hydroxybutyrate-R-3-hydroxyhexanoate]-based polymeric micelles for effective melanoma treatmentsAdv Healthc Mater20181801221online ahead of print10.1002/adhm.20180122130398017Open DOISearch in Google Scholar

Puppi D, Morelli A, Chiellini F. Additive manufacturing of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(ε-caprolactone) blend scaffolds for tissue engineering. Bioengineering 2017; 4(2), 49.10.3390/bioengineering4020049PuppiDMorelliAChielliniFAdditive manufacturing of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(ε-caprolactone) blend scaffolds for tissue engineeringBioengineering20174249559046528952527Open DOISearch in Google Scholar

Mota C, Wang SY, Puppi D, Gazzarri M, Migone C, Chiellini F, et al. (2017). Additive manufacturing of poly [(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development. J Tissue Eng Regen M 2017; 11(1): 175-186.MotaCWangSYPuppiDGazzarriMMigoneCChielliniFet al2017Additive manufacturing of poly [(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone developmentJ Tissue Eng Regen M 2017;11117518610.1002/term.189724889107Search in Google Scholar

Sanhueza C, Acevedo F, Rocha S, Villegas P, Seeger M, Navia R. Polyhydroxyalkanoates as biomaterial for electrospun scaffolds. Int J Biol Macromol 2018; online ahead of print; doi: 10.1016/j.ijbiomac.2018.11.06830445089SanhuezaCAcevedoFRochaSVillegasPSeegerMNaviaRPolyhydroxyalkanoates as biomaterial for electrospun scaffoldsInt J Biol Macromol2018online ahead of print10.1016/j.ijbiomac.2018.11.06830445089Search in Google Scholar

Puppi D, Pirosa A, Morelli A, Chiellini F. Design, fabrication and characterization of tailored polyR-3-hydroxybutyrate-co-R-3-hydroxyexanoate] scaffolds by computer-aided wet-spinning. Rapid Prototyping J 2018; 24(1): 1-8.10.1108/RPJ-03-2016-0037PuppiDPirosaAMorelliAChielliniFDesign, fabrication and characterization of tailored polyR-3-hydroxybutyrate-co-R-3-hydroxyexanoate] scaffolds by computer-aided wet-spinningRapid Prototyping J201824118Open DOISearch in Google Scholar

Ellis G, Cano P, Jadraque M, Martín M, López L, Núñez T, et al. Laser microperforated biodegradable microbial polyhydroxyalkanoate substrates for tissue repair strategies: an infrared microspectroscopy study. Anal Bioanal Chem 2011; 399(7): 2379-2388.10.1007/s00216-011-4653-821240671EllisGCanoPJadraqueMMartínMLópezLNúñezTet alLaser microperforated biodegradable microbial polyhydroxyalkanoate substrates for tissue repair strategies: an infrared microspectroscopy studyAnal Bioanal Chem201139972379238821240671Open DOISearch in Google Scholar

Chang CK, Wang HMD, Lan JCW. Investigation and characterization of plasma-treated poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers for an in vitro cellular study of mouse adipose-derived stem cells. Polymers 2018; 10(4): 355.10.3390/polym10040355ChangCKWangHMDLanJCWInvestigation and characterization of plasma-treated poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers for an in vitro cellular study of mouse adipose-derived stem cellsPolymers2018104355641517030966390Open DOISearch in Google Scholar

Bhatia SK, Wadhwa P, Hong JW, Hong YG, Jeon JM, Lee ES, Yang YH. Lipase mediated functionalization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with ascorbic acid into an antioxidant active biomaterial. Int J Biol Macromol 2019; 123(15): 117-123.10.1016/j.ijbiomac.2018.11.05230428310BhatiaSKWadhwaPHongJWHongYGJeonJMLeeESYangYHLipase mediated functionalization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with ascorbic acid into an antioxidant active biomaterialInt J Biol Macromol20191231511712330428310Open DOISearch in Google Scholar

Zhang J, Cao Q, Li S, Lu X, Zhao Y, Guan JS, et al. 3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanism. Biomaterials 2013; 34(30), 7552-7562.10.1016/j.biomaterials.2013.06.04323849878ZhangJCaoQLiSLuXZhaoYGuanJSet al3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer’s disease via mitochondria protection mechanismBiomaterials201334307552756223849878Open DOISearch in Google Scholar

Rydz J, Musioł M, Zawidlak-Węgrzyńska B, Sikorska W. Present and Future of Biodegradable Polymers for Food Packaging Applications. In: (Grumezescu AM, Holban AM, Eds.): Biopolymers for Food Design - A volume in Handbook of Food Bioengineering 2018: pp. 431-467.RydzJMusiołMZawidlak-WęgrzyńskaBSikorskaWPresent and Future of Biodegradable Polymers for Food Packaging ApplicationsGrumezescuAMHolbanAMBiopolymers for Food Design - A volume in Handbook of Food Bioengineering201843146710.1016/B978-0-12-811449-0.00014-1Search in Google Scholar

Plackett D, Siró I. Polyhydroxyalkanoates (PHAs) for food packaging. In: Lagarón JM (Ed.): Multifunctional and nanoreinforced polymers for food packaging. Elsevier, 2011; pp. 498-526.PlackettDSiróIPolyhydroxyalkanoates (PHAs) for food packagingLagarónJMMultifunctional and nanoreinforced polymers for food packagingElsevier201149852610.1533/9780857092786.4.498Search in Google Scholar

Koller M. Poly(hydroxyalkanoates) for food packaging: Application and attempts towards implementation. App Food Biotechnol 2014; 1(1): 3-15.KollerMPoly(hydroxyalkanoates) for food packaging: Application and attempts towards implementationApp Food Biotechnol201411315Search in Google Scholar

Khosravi-Darani K, Bucci DZ. Application of poly(hydroxyalkanoate) in food packaging: Improvements by nanotechnology. Chem Biochem Engineering Q 2015; 29(2): 275-285.10.15255/CABEQ.2014.2260Khosravi-DaraniKBucciDZApplication of poly(hydroxyalkanoate) in food packaging: Improvements by nanotechnologyChem Biochem Engineering Q2015292275285Open DOISearch in Google Scholar

Sun J, Shen J, Chen S, Cooper M, Fu H, Wu D, Yang Z. Nanofiller reinforced biodegradable PLA/PHA composites: Current status and future trends. Polymers 2018; 10(5): 505.10.3390/polym10050505SunJShenJChenSCooperMFuHWuDYangZNanofiller reinforced biodegradable PLA/PHA composites: Current status and future trendsPolymers2018105505641539630966540Open DOISearch in Google Scholar

Kovalcik A, Machovsky M, Kozakova Z, Koller M. Designing packaging materials with viscoelastic and gas barrier properties by optimized processing of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with lignin. React Funct Polym 2015; 94: 25-34.10.1016/j.reactfunctpolym.2015.07.001KovalcikAMachovskyMKozakovaZKollerMDesigning packaging materials with viscoelastic and gas barrier properties by optimized processing of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) with ligninReact Funct Polym2015942534Open DOISearch in Google Scholar

Fabra MJ, López-Rubio A, Ambrosio-Martín J, Lagaron JM. Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocolloid 2016; 61: 261-268.10.1016/j.foodhyd.2016.05.025FabraMJLópez-RubioAAmbrosio-MartínJLagaronJMImproving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packagingFood Hydrocolloid201661261268Open DOISearch in Google Scholar

Bordes P, Pollet E, Bourbigot S, Averous L. Structure and Properties of PHA/Clay Nano-Biocomposites Prepared by Melt Intercalation. Macromol Chem Physic 2008; 209(14): 1473-1484.10.1002/macp.200800022BordesPPolletEBourbigotSAverousLStructure and Properties of PHA/Clay Nano-Biocomposites Prepared by Melt IntercalationMacromol Chem Physic20082091414731484Open DOISearch in Google Scholar

Akin O, Tihminlioglu F. Effects of organo-modified clay addition and temperature on the water vapor barrier properties of polyhydroxy butyrate homo and copolymer nanocomposite films for packaging applications. J Polym Environ 2018; 26(3): 1121-1132.10.1007/s10924-017-1017-2AkinOTihminliogluFEffects of organo-modified clay addition and temperature on the water vapor barrier properties of polyhydroxy butyrate homo and copolymer nanocomposite films for packaging applicationsJ Polym Environ201826311211132Open DOISearch in Google Scholar

Harding KG, Dennis JS, Von Blottnitz H, Harrison STL. Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 2007; 130(1): 57-66.1740031810.1016/j.jbiotec.2007.02.012HardingKGDennisJSVon BlottnitzHHarrisonSTLEnvironmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysisJ Biotechnol20071301576617400318Search in Google Scholar

Titz M, Kettl KH, Shahzad K, Koller M, Schnitzer H, Narodoslawsky M. Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technol Environ Pol. 2012; 14: 495-503.10.1007/s10098-012-0464-7TitzMKettlKHShahzadKKollerMSchnitzerHNarodoslawskyMProcess optimization for efficient biomediated PHA production from animal-based waste streamsClean Technol Environ Pol201214495503Open DOISearch in Google Scholar

Shahzad K, Kettl KH, Titz M, Koller M, Schnitzer H, Narodoslawsky M. Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources. Clean Technol Environ Pol. 2013; 15: 525-536.10.1007/s10098-013-0608-4ShahzadKKettlKHTitzMKollerMSchnitzerHNarodoslawskyMComparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resourcesClean Technol Environ Pol201315525536Open DOISearch in Google Scholar

Shahzad K, Narodoslawsky M, Sagir M, Ali N, Ali S, Rashid MI, et al Techno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester production. Waste Manage 2017; 67: 73-85.10.1016/j.wasman.2017.05.047ShahzadKNarodoslawskyMSagirMAliNAliSRashidMIet alTechno-economic feasibility of waste biorefinery: Using slaughtering waste streams as starting material for biopolyester productionWaste Manage201767738528595804Open DOISearch in Google Scholar

Kookos IK, Koutinas A, Vlysidis A. Life cycle assessment of bioprocessing schemes for poly (3-hydroxybutyrate) production using soybean oil and sucrose as carbon sources. Resour Conserv Recy 2019; 141: 317-328.10.1016/j.resconrec.2018.10.025KookosIKKoutinasAVlysidisALife cycle assessment of bioprocessing schemes for poly (3-hydroxybutyrate) production using soybean oil and sucrose as carbon sourcesResour Conserv Recy2019141317328Open DOISearch in Google Scholar

Jiang G, Hill DJ, Kowalczuk M, Johnston B, Adamus G, Irorere V, Radecka I. Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int J Mol Sci 2016; 17(7): 1157.10.3390/ijms17071157JiangGHillDJKowalczukMJohnstonBAdamusGIrorereVRadeckaICarbon sources for polyhydroxyalkanoates and an integrated biorefineryInt J Mol Sci20161771157496452927447619Open DOISearch in Google Scholar

Dietrich K, Dumont MJ, Del Rio LF, Orsat V. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sust Prod Consum 2017; 9: 58-70.DietrichKDumontMJDel RioLFOrsatVProducing PHAs in the bioeconomy—Towards a sustainable bioplasticSust Prod Consum20179587010.1016/j.spc.2016.09.001Search in Google Scholar

eISSN:
2564-615X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, other, Medicine, Biomedical Engineering, Physics, Nanotechnology, Biophysics