Zacytuj

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021; 71(3): 209-249. doi: 10.3322/caac.21660. Epub 2021 Feb 4. Search in Google Scholar

Internet site: https://gco.iarc.fr/today/data/factsheets/populations/688-serbia-fact-sheets.pdf Search in Google Scholar

Brown L, Carr MJ, Sam C, Sun W, Whiting J, Kim Y, et al. Tolerance and Outcomes of Neoadjuvant Chemotherapy in Geriatric Breast Cancer Patients. J Surg Res. 2023; 283: 329-335. doi:10.1016/j.jss.2022.10.092. Search in Google Scholar

Guo YQ, Ju QM, You M, Liu Y, Yusuf A, Soon LK. Depression, anxiety and stress among metastatic breast cancer patients on chemotherapy in China. 2023; 22(1): 33. doi: 10.1186/s12912-023-01184-1. Search in Google Scholar

Wang J, Seebacher N, Shi H, Kan Q, Duan Z. Novel strategies to prevent the development of multidrug resistance (MDR) in cancer. Oncotarget. 2017; 8(48): 84559-71. doi: 10.18632/oncotarget.19187. Search in Google Scholar

Hu Y, Li Y, Yao Z, Huang F, Cai H, Liu H, et al. Immunotherapy: Review of the Existing Evidence and Challenges in Breast Cancer. Cancers (Basel). 2023; 15(3): 563. doi: 10.3390/cancers15030563. Search in Google Scholar

Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018; 359: 1350-1355. doi: 10.1126/science.aar4060. Search in Google Scholar

Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992; 11(11): 3887-95. doi: 10.1002/j.1460-2075.1992.tb05481.x. Search in Google Scholar

Mariotti FR, Petrini S, Ingegnere T, Tumino N, Besi F, Scordamaglia F, et al. PD-1 in human NK cells: evidence of cytoplasmic mRNA and protein expression. Oncoimmunology. 2018; 8(3): 1557030. doi: 10.1080/2162402X.2018.1557030. Search in Google Scholar

Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization. J Allergy Clin Immunol. 2017; 139 (1): 335-346.e3. doi: 10.1016/j.jaci.2016.04.025. Search in Google Scholar

Gutic B, Bozanovic T, Mandic A, Dugalic S, Todorovic J, Stanisavljevic D, et al. Programmed cell death-1 and its ligands: Current knowledge and possibilities in immunotherapy. Clinics (Sao Paulo). 2023; 78: 100177. doi: 10.1016/j.clinsp.2023.100177. Search in Google Scholar

Nie X, Chen W, Zhu Y, Huang B, Yu W, Wu Z, et al. B7-DC (PD-L2) costimulation of CD4+ T-helper 1 response via RGMb. Cell Mol Immunol. 2018; 15(10): 888-97. doi: 10.1038/cmi.2017.17. Search in Google Scholar

Hoffmann O, Wormland S, Bittner AK, Collenburg M, Horn PA, Kimmig R, et al. Programmed death receptor ligand-2 (PD-L2) bearing extracellular vesicles as a new biomarker to identify early triple-negative breast cancer patients at high risk for relapse. J Cancer Res Clin Oncol. 2023; 149(3):1159-74. doi: 10.1007/s00432-022-039 80-9. Search in Google Scholar

Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med. 2015; 21 (1): 24-33. Search in Google Scholar

Vaddepally RK, Kharel P, Pandey R, Garje R, Chandra AB. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers (Basel). 2020; 12 (3): 738. Search in Google Scholar

Schildberg FA, Klein SR, Freeman GJ, Sharpe AH. Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity. 2016; 44 (5): 955-72. Search in Google Scholar

Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018; 18 (10): 635-47. Search in Google Scholar

Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 2019; 234 (6): 8509-21. Search in Google Scholar

Pathria P, Louis TL, Varner JA. Targeting Tumor-Associated Macrophages in Cancer. Trends Immunol. 2019; 40 (4): 310-27 Search in Google Scholar

Alper KM, Gunes E. The untold story of IFN-γ in cancer biology. Cytokine Growth Factor Rev. 2016; 31: 73-81. Search in Google Scholar

Mandal R, Şenbabaoğlu Y, Desrichard A, Havel JJ, Dalin MG, Riaz N, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. 2016; 1(17): e89829. doi: 10.1172/jci.insight.89829. Search in Google Scholar

Davis ZB, Vallera DA, Miller JS, Felices M. Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy. Semin Immunol. 2017; 31: 64-75. doi:10.1016/j.smim.2017.07.011. Search in Google Scholar

Freud AG, Mundy-Bosse BL, Yu J, Caligiuri MA. The Broad Spectrum of Human Natural Killer Cell Diversity. Immunity. 2017; 47(5): 820-33. doi: 10.1016/j.immuni.2017.10.008. Search in Google Scholar

Jurisevic M, Jagic N, Gajovic N, Arsenijevic A, Jovanovic M, Milovanovic M, et al. O,O’-diethyl-(S,S)-ethylenediamine-N,N’-di-2-(3-cyclohexyl) propanoate dihydrochloride enhances influx of effective NK and NKT cells in murine breast cancer. Vojnosanit Pregl. 2020; 77(7): 715–723 doi:10.2298/VSP180723149J. Search in Google Scholar

Gajovic N, Jurisevic M, Pantic J, Radosavljevic G, Arsenijevic N, Lukic ML, et al. Attenuation of NK cells facilitates mammary tumor growth in streptozotocin-induced diabetes in mice. Endocr Relat Cancer 2018; 25(4): 493-507. Search in Google Scholar

Keenan TE, Tolaney SM. Role of Immunotherapy in Triple-Negative Breast Cancer. J Natl Compr Canc Netw. 2020; 18(4): 479-489. doi: 10.6004/jnccn.2020.7554. Search in Google Scholar

Liu Q, Cheng R, Kong X, Wang Z, Fang Y, Wang J. Molecular and Clinical Characterization of PD-1 in Breast Cancer Using Large-Scale Transcriptome Data. Front Immunol. 2020; 11: 558757. doi: 10.3389/fimmu. 2020.558757. Search in Google Scholar

Dong W, Wu X, Ma S, Wang Y, Nalin AP, Zhu Z, et al. The Mechanism of Anti-PD-L1 Antibody Efficacy against PD-L1-Negative Tumors Identifies NK Cells Expressing PD-L1 as a Cytolytic Effector. Cancer Discov. 2019; 9(10): 1422-1437. doi: 10.1158/2159-8290.CD-18-1259. Search in Google Scholar

Neo SY, Yang Y, Record J, Ma R, Chen X, Chen Z, et al. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J Clin Invest. 2020; 130(3): 1185-1198. doi: 10.1172/JCI128895. Search in Google Scholar

Morandi F, Horenstein AL, Chillemi A, Quarona V, Chiesa S, Imperatori A, et al. CD56brightCD16 NK cells produce adenosine through a CD38-mediated pathway and act as regulatory cells inhibiting autologous CD4+ T cell proliferation. J Immunol. 2015; 195(3): 965–972. doi: 10.4049/jimmunol.1500591. Search in Google Scholar

Tian W, Wang L, Yuan L, Duan W, Zhao W, Wang S, et al. A prognostic risk model for patients with triple negative breast cancer based on stromal natural killer cells, tumor-associated macrophages and growth-arrest specific protein 6. Cancer Sci. 2016; 107(7): 882–889. doi: 10.1111/cas.12964. Search in Google Scholar

Zwirner NW, Domaica CI, Fuertes MB. Regulatory functions of NK cells during infections and cancer. J Leukoc Biol. 2021; 109(1): 185-194. doi: 10.1002/JLB.3MR0820-685R. Search in Google Scholar

Zhang H, Li Y, Liu X, Liang Z, Yan M, Liu Q, et al. ImmTAC/Anti-PD-1 antibody combination to enhance killing of cancer cells by reversing regulatory T-cell-mediated immunosuppression. Immunology. 2018; 155(2): 238-250. doi: 10.1111/imm.12954. Search in Google Scholar

Wu D, Liu Y, Pang N, Sun M, Wang X, Haridia Y, et al. PD-1/PD-L1 pathway activation restores the imbalance of Th1/Th2 and treg/Th17 cells subtypes in immune thrombocytopenic purpura patients. Medicine (Baltimore). 2019; 98(43): e17608. doi: 10.1097/MD.000000 0000017608. Search in Google Scholar

Dong MB, Wang G, Chow RD, Ye L, Zhu L, Dai X, et al. Systematic Immunotherapy Target Discovery Using Genome-Scale In Vivo CRISPR Screens in CD8 T Cells. Cell. 2019; 178(5): 1189-1204.e23. doi: 10.1016/j.cell.2019.07.044. Search in Google Scholar

Amatya N, Garg AV, Gaffen SL. IL-17 Signaling: The Yin and the Yang. Trends Immunol. 2017; 38(5): 310- 322. doi: 10.1016/j.it.2017.01.006. Search in Google Scholar

Borrego F, Robertson MJ, Ritz J, Pena J, Solana R. CD69 is a stimulatory receptor for natural killer cell and its cytotoxic effect is blocked by CD94 inhibitory receptor. Immunology 1999; 97(1): 159–165. Search in Google Scholar

Wang Z, Tan F. The blockade of PD-1/PD-L1 pathway promotes the apoptosis of CD19+ CD25+ Bregs and suppresses the secretion of IL-10 in patients with allergic rhinitis. Scand J Immunol. 2020; 91(2): e12836. doi: 10.1111/sji.12836. Search in Google Scholar

Prasad S, Hu S, Sheng WS, Chauhan P, Lokensgard JR. Reactive glia promote development of CD103+ CD69+ CD8+ T-cells through programmed cell death-ligand 1 (PD-L1). Immun Inflamm Dis. 2018; 6(2): 332-344. doi: 10.1002/iid3.221. Search in Google Scholar

Gao Z, Feng Y, Xu J, Liang J. T-cell exhaustion in immune-mediated inflammatory diseases: New implications for immunotherapy. Front Immunol. 2022; 13: 977394. doi: 10.3389/fimmu.2022.977394. Search in Google Scholar

eISSN:
2956-0454
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Medicine, Clinical Medicine, other