1. bookTom 28 (2019): Zeszyt 6 (August 2019)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2719-9509
Pierwsze wydanie
01 Jan 1992
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Otwarty dostęp

Measurement Method of the Width of the Strands of Cut Tobacco Based on Digital Image Processing

Data publikacji: 30 Aug 2019
Tom & Zeszyt: Tom 28 (2019) - Zeszyt 6 (August 2019)
Zakres stron: 278 - 285
Otrzymano: 24 Apr 2019
Przyjęty: 20 Aug 2019
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2719-9509
Pierwsze wydanie
01 Jan 1992
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

1. Zhang, H.L.: Effect of Width of Cut Lamina on Tar of Cigarette Smoke; Tob. Sci. Technol. (1996) 5–7. DOI: 10.16135/j.issn1002-0861.1996.05.002Search in Google Scholar

2. Yang, Y., H. Gao, H. Wang, Z. Liu, Y.Z. Wang, H.J. Lin, Y.X. Cui, and Y.K. Hua: Effects of Combination of Different Width Cut Tobacco on Cigarette Physical Indexes and its Comprehensive Stability; J. Yunnan Agric. Univ. 32 (2017) 488–497.Search in Google Scholar

3. Yao, G.M., W.H. Wang, X.Z. Yin, S.H. Li, and Q. Li: Effect of the Size Proportion of Cut Tobacco on the Filling Power of Cut Tobacco and Cigarette Making Quality; J. Zhengzhou Inst. Light Ind. (Nat. Sci.) 18 (2003) 62–64.Search in Google Scholar

4. International Organisation of Standardization (ISO): ISO 20193:2012 — Analysis of Tobacco and Tobacco Products — Determination of the Width of the Strands of Cut Tobacco; ISO, Geneva, Switzerland, 2012. Available at: https://www.iso.org/standard/52696.html (accessed July 2019)Search in Google Scholar

5. Lu, Y., T.Q. Chen, J. Chen, J. Zhang, and A. Tisler: Machine Vision Systems Using Machine Learning for Industrial Product Inspection; Proceedings of SPIE – The International Society for Optical Engineering 4567 (2001) 161–170. DOI: 10.1117/12.45525310.1117/12.455253Otwórz DOISearch in Google Scholar

6. Lahanjar, F., R. Bernard, F. Pernuš, and S. Kovačič: Machine Vision System for Inspecting Electric Plates; Comput. Ind. 47 (2002) 113–122. DOI: 10.1016/S0166-3615(01)00134-810.1016/S0166-3615(01)00134-8Otwórz DOISearch in Google Scholar

7. Zhang, Z.: A Flexible New Technique for Camera Calibration; IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 1330–1334. DOI: 10.1109/34.88871810.1109/34.888718Otwórz DOISearch in Google Scholar

8. Kannala, J. and S.S. Brandt: A Generic Camera Model and Calibration Method for Conventional, Wide-Angle, and Fish-Eye Lenses; IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006) 1335–1340. DOI: 10.1109/TPAMI.2006.15310.1109/TPAMI.2006.153Search in Google Scholar

9. Mayer, A. and H. Greenspan: An Adaptive Mean-Shift Framework for MRI Brain Segmentation; IEEE Trans. Med. Imaging, 28 (2009) 1238–1250. DOI: 10.1109/TMI.2009.201385010.1109/TMI.2009.2013850Otwórz DOISearch in Google Scholar

10. Duda, R.O. and P. E. Hart: Use of the Hough Transformation to Detect Lines and Curves in Pictures; Commun. ACM 15 (1972) 11–15. Available at: https://www.cse.unr.edu/~bebis/CS474/Handouts/HoughTransformPaper.pdf (accessed July 2019)10.1145/361237.361242Search in Google Scholar

11. Xia, Y.W., Q. Feng, Y. Zhao, L. Xiang, Z. Zhu, Y. Liu, J. Liu, L. Zhang, J. Zhao, Q. Zhong, H. Yi, and R. Du: Method for Measuring Width of Tobacco Shred Based on Computer Vision; Tob. Sci. Technol. 9 (2014) 10–14. DOI: 10.3969/j.issn.1002-0861.2014.09.002Search in Google Scholar

12. Goshtasby, A.: Correction of Image Deformation From Lens Distortion Using Bezier Patches; Comput. Vision Graph. 47 (1989) 385–394. DOI: 10.1016/0734-189X(89)90120-510.1016/0734-189X(89)90120-5Otwórz DOISearch in Google Scholar

13. Brown, D.C.: Close Range Camera Calibration; Photo-gramm. Eng. 37 (1971) 855–866.Search in Google Scholar

14. Gharib, M. and S. Ghani: Free Vibration Analysis of Linear Particle Chain Impact Damper; J. Sound Vib. 332 (2013) 6254–6264. DOI: 10.1016/j.jsv.2013.07.01310.1016/j.jsv.2013.07.013Otwórz DOISearch in Google Scholar

15. Eldahshan, K., M. Youssef, E. Masameer, and M.A. Mustafa: Comparison of Segmentation Framework on Digital Microscope Images for Acute Lymphoblastic Leukemia Diagnosis Using RGB and HSV Color Spaces; Biotechnol. Bioeng. 2 (2015) 27–34. DOI: 10.5120/15590-442610.5120/15590-4426Otwórz DOISearch in Google Scholar

16. Joshi, M.D., A.H. Karode, and S.R. Suralkar: White Blood Cells Segmentation and Classification to Detect Acute Leukemia; Int. J. Emerg. Trends Technol. Comput. Sci. 2 (2013) 147–151. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.387.699&rep=rep1&type=pdf (accessed August 2019)Search in Google Scholar

17. Cheng, Y.Z.: Mean Shift, Mode Seeking, and Clustering; IEEE Transactions on Pattern Analysis and Machine Intelligence 17 (1995) 790–799. DOI: 10.1109/34.40056810.1109/34.400568Otwórz DOISearch in Google Scholar

18. Zhang, Y.C., H. Guo, F. Chen, and H. Yang: Weighted Kernel Mapping Model With Spring Simulation Based Watershed Transformation for Level Set Image Segmentation; Neurocomputing 249 (2017) 1–18. DOI: 10.1016/j.neucom.2017.01.04410.1016/j.neucom.2017.01.044Otwórz DOISearch in Google Scholar

19. Strang, G.: Linear Algebra and its Applications; 3rd edition, Harcourt, Brace, Jovanovic, San Diego, CA, USA, 1988. ISBN-13: 978-0155510050Search in Google Scholar

20. Rosenfeld, A. and J.L. Pfaltz: Sequential Operations in Digital Picture Processing; JACM 13 (1966) 471–494. DOI: 10.1145/321356.32135710.1145/321356.321357Otwórz DOISearch in Google Scholar

21. Bhattacharya, P.: Connected Component Labeling for Binary Images on Reconfigurable Mesh Architectures; J. Syst. Architect. 42 (1996) 309–313. DOI: 10.1016/1383-7621(96)00027-610.1016/1383-7621(96)00027-6Otwórz DOISearch in Google Scholar

22. Samet, H.: Connected Component Labeling Using Quadtrees; JACM 28 (1981) 487–501. Available at: https://www.cs.umd.edu/users/hjs/pubs/SametJACM81.pdf (accessed July 2019)10.1145/322261.322267Search in Google Scholar

23. He, X.G., J. Tian, L.F. Wu, and Y.Y: Zhang: Illumination Normalization with Morphological Quotient Image; J. Softw. 18 (2007) 2318–2325. DOI: 10.1360/jos18231810.1360/jos182318Otwórz DOISearch in Google Scholar

24. Li, X.F., D.W. Ma, and Y.J. Nian: The Research on Algorithm of Image’s Erosion and Dilation; Image Technol. 01 (2005) 37–39. DOI: 10.3969/j.issn.1001-0270.2005.01.00910.3969/j.issn.1001-0270.2005.01.009Otwórz DOISearch in Google Scholar

25. Cheng, J., Q. Liu, and H. Lu: Texture Classification Using Kernel Independent Component Analysis; Proceedings of the 17th International Conference on Pattern Recognition 1 (2004) 23–26. DOI: 10.1109/ICPR.2004.133423110.1109/ICPR.2004.1334231Otwórz DOISearch in Google Scholar

26. Liu X.W. and L. Cheng: Independent Filters for Texture Classification; Proceedings of IEEE International Conference on Image Processing 3 (2002) 24–28. DOI: 10.1109/ICIP.2002.103891710.1109/ICIP.2002.1038917Otwórz DOISearch in Google Scholar

27. Liu, X. and L. Cheng: Independent Spectral Representations of Images for Recognition; J. Opt. Soc. Am. A 20 (2003) 1271–1282. DOI: 10.1364/JOSAA.20.00127110.1364/JOSAA.20.001271Otwórz DOISearch in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo