Otwarty dostęp

The Quality Assurance of Cast and Wrought Aero Jet Engine Components Made from Ni-base Superalloys with Using of Quantitative Metallography Methods and Alloys Lifetime Prediction


Zacytuj

Akca, E., Gurse, l. A., 2015. A Review on Superalloys and IN718 Nickel-Based INCONEL Superalloy. Periodicals of Engineering and Natural Science, 3(1), 15-27.10.21533/pen.v3i1.43Search in Google Scholar

Belan, J., 2012. Study of advanced materials for aircraft jet engines using quantitative metallography. In: R.K. Agarwal (Ed.), Recent Advances in Aircraft Technology, 1st ed., Vol. 1, InTech, Rijeka, pp. 49-74.10.5772/37254Search in Google Scholar

Hanumantha Rao, D., Tagore, G.R.N., Ranga Janardhana, G., 2010. Evolution of artificial network (ANN) model for predicting secondary dendrite arm spacing in aluminium alloy casting. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 32(3), 276-281, DOI: 10.1590/S1678-5878201000030001110.1590/S1678-58782010000300011Open DOISearch in Google Scholar

Huang, X., Wang, L., Hu, Y., Guo, G., Salmon, D., Li, Y., Zhao, W., 2016. Fatigue Crack Propagation Behavior of Ni-Based Superalloys After Overloading at Elevated Temperatures. Progress in Natural Science: Materials International, 26(2), 197–203.10.1016/j.pnsc.2016.03.007Open DOISearch in Google Scholar

Kracke, A., 2010. Superalloys, the most successful alloy system of modern times-past, present and future. 7th international symposium on Superalloy 718 and derivatives, 13-50.10.7449/2010/Superalloys_2010_13_50Search in Google Scholar

Marakumo, T., Kobayashi, T., Koizumi, Y., Harada, H., 2004. Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction, Acta Materialia, 52, 3737-3744.10.1016/j.actamat.2004.04.028Open DOISearch in Google Scholar

Okura, T., 2015. Materials for Aircraft Engines, ASEN 5063 Aircraft Propulsion Final Report, online: https://www.colorado.edu/faculty/.../materials-aircraft-enginesSearch in Google Scholar

Oravcová, M., Palček, P., Chalupová, M., Uhríčik, M., 2017. Fracture mechanism differences created by fatigue and impact test. Materials Today – Proceedings, 4(5), 5921-5924.10.1016/j.matpr.2017.06.070Open DOISearch in Google Scholar

Saltykov, S.A., 1958. Steremetricheskaya Metallograpfiya (Stereometric Metallography), 2nd revised and supplemented edition, Metallurgizdat, Moscow, 444p.Search in Google Scholar

Sjöberg, G., 2008. Aircraft Engine Structure Materials. Volvo Aero Corporation, online: https://www.sto.nato.int/publications/.../EN-AVT-207-13.pdfSearch in Google Scholar

Vaško, A., 2017. Fatigue properties of nodular cast iron at low frequency cyclic loading. Archives of Metallurgy and Materials, 62(4), 2205-2210.10.1515/amm-2017-0325Open DOISearch in Google Scholar

Zatkaliková, V., Oravcová, M., Palček, P., Markovičová, L., 2017. The effect of surface treatment on corrosion resistance of austenitic biomaterial. TRANSACTIONS OF FAMENA, 41(4), 25-34, DOI: 10.21278/TOF.4140310.21278/TOF.41403Open DOISearch in Google Scholar

Zhang, H., Guan, Z.W., Wang, Q.Y., Liu, Y.J., Li, J.K., 2018. Effects of Stress Ratio and Microstructure on Fatigue Failure Behavior of Polycrystalline Nickel Superalloy. JMEPEG, 27, 2534–2544.10.1007/s11665-018-3331-9Search in Google Scholar